Inverse scattering problem for operators with a finite-dimensional non-local potential

IF 2.4 2区 数学 Q1 MATHEMATICS
V.A. Zolotarev
{"title":"Inverse scattering problem for operators with a finite-dimensional non-local potential","authors":"V.A. Zolotarev","doi":"10.1016/j.jde.2025.113606","DOIUrl":null,"url":null,"abstract":"<div><div>Scattering problem for a self-adjoint integro-differential operator, which is the sum of the operator of the second derivative and of a finite-dimensional self-adjoint operator, is studied. Jost solutions are found and it is shown that the scattering function has a multiplicative structure, besides, each of the multipliers is a scattering coefficient for a pair of self-adjoint operators, one of which is a one-dimensional perturbation of the other. Solution of the inverse problem is based upon the solutions to the inverse problem for every multiplier. A technique for finding parameters of the finite-dimensional perturbation via the scattering data is described.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113606"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006333","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Scattering problem for a self-adjoint integro-differential operator, which is the sum of the operator of the second derivative and of a finite-dimensional self-adjoint operator, is studied. Jost solutions are found and it is shown that the scattering function has a multiplicative structure, besides, each of the multipliers is a scattering coefficient for a pair of self-adjoint operators, one of which is a one-dimensional perturbation of the other. Solution of the inverse problem is based upon the solutions to the inverse problem for every multiplier. A technique for finding parameters of the finite-dimensional perturbation via the scattering data is described.
有限维非局域势算子的逆散射问题
研究了二阶导数算子与有限维自伴随算子和的自伴随积分微分算子的散射问题。得到了散射函数的约斯解,并证明了散射函数具有一个乘式结构,并且每个乘式都是一对自伴随算子的散射系数,其中一个算子是另一个算子的一维摄动。反问题的解是基于每个乘子的反问题的解。描述了一种利用散射数据求有限维扰动参数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信