Compact embeddings of Sobolev, Besov, and Triebel–Lizorkin spaces

IF 2.4 2区 数学 Q1 MATHEMATICS
Ryan Alvarado , Przemysław Górka , Artur Słabuszewski
{"title":"Compact embeddings of Sobolev, Besov, and Triebel–Lizorkin spaces","authors":"Ryan Alvarado ,&nbsp;Przemysław Górka ,&nbsp;Artur Słabuszewski","doi":"10.1016/j.jde.2025.113598","DOIUrl":null,"url":null,"abstract":"<div><div>We establish necessary and sufficient conditions guaranteeing compactness of embeddings of fractional Sobolev spaces, Besov spaces, and Triebel–Lizorkin spaces, in the general context of quasi-metric-measure spaces. Although stated in the setting of quasi-metric spaces, the main results in this article are new, even in the metric setting. Moreover, by considering the more general category of quasi-metric spaces we are able to obtain these characterizations for optimal ranges of exponents that depend (quantitatively) on the geometric makeup of the underlying space.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113598"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006254","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish necessary and sufficient conditions guaranteeing compactness of embeddings of fractional Sobolev spaces, Besov spaces, and Triebel–Lizorkin spaces, in the general context of quasi-metric-measure spaces. Although stated in the setting of quasi-metric spaces, the main results in this article are new, even in the metric setting. Moreover, by considering the more general category of quasi-metric spaces we are able to obtain these characterizations for optimal ranges of exponents that depend (quantitatively) on the geometric makeup of the underlying space.
Sobolev, Besov和triiebel - lizorkin空间的紧嵌入
在准度量-测度空间的一般情况下,建立了分数Sobolev空间、Besov空间和triiebel - lizorkin空间嵌入紧性的充分必要条件。虽然在准度量空间的背景下陈述,但本文的主要结果是新的,即使在度量空间的背景下也是如此。此外,通过考虑准度量空间的更一般的类别,我们能够获得(定量地)依赖于底层空间的几何组成的指数的最佳范围的这些特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信