{"title":"Sample path properties and small ball probabilities for stochastic fractional diffusion equations","authors":"Yuhui Guo , Jian Song , Ran Wang , Yimin Xiao","doi":"10.1016/j.jde.2025.113604","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the following stochastic space-time fractional diffusion equation with vanishing initial condition:<span><span><span><math><msup><mrow><mo>∂</mo></mrow><mrow><mi>β</mi></mrow></msup><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>−</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>+</mo><msubsup><mrow><mi>I</mi></mrow><mrow><mn>0</mn><mo>+</mo></mrow><mrow><mi>γ</mi></mrow></msubsup><mrow><mo>[</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>]</mo></mrow><mo>,</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mi>γ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> is the fractional/power of Laplacian and <span><math><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></math></span> is a fractional space-time Gaussian noise. We prove the existence and uniqueness of the solution and then focus on various sample path regularity properties of the solution. More specifically, we establish the exact uniform and local moduli of continuity and Chung's laws of the iterated logarithm. The small ball probability is also studied.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113604"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500631X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the following stochastic space-time fractional diffusion equation with vanishing initial condition: where , , , is the fractional/power of Laplacian and is a fractional space-time Gaussian noise. We prove the existence and uniqueness of the solution and then focus on various sample path regularity properties of the solution. More specifically, we establish the exact uniform and local moduli of continuity and Chung's laws of the iterated logarithm. The small ball probability is also studied.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics