On the rigidity of Arnoux-Rauzy words

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
V. Berthé , S. Puzynina
{"title":"On the rigidity of Arnoux-Rauzy words","authors":"V. Berthé ,&nbsp;S. Puzynina","doi":"10.1016/j.aam.2025.102932","DOIUrl":null,"url":null,"abstract":"<div><div>An infinite word generated by a substitution is rigid if all the substitutions which fix this word are powers of the same substitution. Sturmian words as well as characteristic Arnoux-Rauzy words that are generated by iterating a substitution are known to be rigid. In the present paper, we prove that all Arnoux-Rauzy words generated by iterating a substitution are rigid. The proof relies on two main ingredients: first, the fact that the primitive substitutions that fix an Arnoux-Rauzy word share a common power, and secondly, the notion of normal form of an episturmian substitution (i.e., a substitution that fixes an Arnoux-Rauzy word). The main difficulty is then of a combinatorial nature and relies on the normalization process when taking powers of episturmian substitutions: the normal form of a square is not necessarily equal to the square of the normal forms.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"170 ","pages":"Article 102932"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000946","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An infinite word generated by a substitution is rigid if all the substitutions which fix this word are powers of the same substitution. Sturmian words as well as characteristic Arnoux-Rauzy words that are generated by iterating a substitution are known to be rigid. In the present paper, we prove that all Arnoux-Rauzy words generated by iterating a substitution are rigid. The proof relies on two main ingredients: first, the fact that the primitive substitutions that fix an Arnoux-Rauzy word share a common power, and secondly, the notion of normal form of an episturmian substitution (i.e., a substitution that fixes an Arnoux-Rauzy word). The main difficulty is then of a combinatorial nature and relies on the normalization process when taking powers of episturmian substitutions: the normal form of a square is not necessarily equal to the square of the normal forms.
论阿努-劳兹词的刚性
如果固定该词的所有替换都是同一替换的幂次,则由替换生成的无限词是刚性的。通过迭代替换生成的Sturmian词以及具有特征的Arnoux-Rauzy词被认为是刚性的。在本文中,我们证明了所有由迭代替换生成的Arnoux-Rauzy词都是刚性的。该证明依赖于两个主要成分:第一,固定一个Arnoux-Rauzy词的原始替换具有共同的幂,第二,一个episturmian替换(即固定一个Arnoux-Rauzy词的替换)的范式概念。主要的困难是一个组合的性质,并且依赖于在进行先验替换的幂时的规范化过程:正方形的正规形式不一定等于正规形式的平方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信