{"title":"Joint trajectory and incentive optimization for privacy-preserving UAV crowdsensing via multi-agent federated reinforcement learning","authors":"Chaoyang Zhu , Xiao Zhu , Tuanfa Qin","doi":"10.1016/j.iot.2025.101689","DOIUrl":null,"url":null,"abstract":"<div><div>UAV-assisted mobile crowdsensing (MCS) presents a promising paradigm for enhancing data collection in smart city environments, but faces a critical systems challenge: the intricate coupling between spatial trajectory planning, economic incentive mechanisms, and information-theoretic privacy guarantees. Traditional approaches addressing these dimensions in isolation often lead to suboptimal performance. In this paper, we propose <strong>PRISM</strong>, a <em>unified framework</em> designed around a holistic optimization approach with three components. First, PRISM models the strategic interactions among Service Providers, UAVs, and ground devices through a multi-level Stackelberg game, capturing the hierarchical economic dynamics that influence participation decisions. Second, it incorporates a privacy-aware incentive mechanism that explicitly links UAV navigation decisions to privacy constraints, dynamically managing the privacy-utility trade-off based on data quality. Third, to address the resulting multi-objective optimization across distinct decision timescales, we introduce <strong>TMFR</strong>, a Two-timescale Multi-agent Federated Reinforcement Learning algorithm that enables UAVs to collaboratively learn policies for both spatial navigation and incentive allocation. Experimental evaluations demonstrate that TMFR achieves 30% faster convergence and 20% higher data quality compared to baselines that optimize only subsets of the problem. These results highlight its suitability for next-generation smart city applications.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"33 ","pages":"Article 101689"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002033","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
UAV-assisted mobile crowdsensing (MCS) presents a promising paradigm for enhancing data collection in smart city environments, but faces a critical systems challenge: the intricate coupling between spatial trajectory planning, economic incentive mechanisms, and information-theoretic privacy guarantees. Traditional approaches addressing these dimensions in isolation often lead to suboptimal performance. In this paper, we propose PRISM, a unified framework designed around a holistic optimization approach with three components. First, PRISM models the strategic interactions among Service Providers, UAVs, and ground devices through a multi-level Stackelberg game, capturing the hierarchical economic dynamics that influence participation decisions. Second, it incorporates a privacy-aware incentive mechanism that explicitly links UAV navigation decisions to privacy constraints, dynamically managing the privacy-utility trade-off based on data quality. Third, to address the resulting multi-objective optimization across distinct decision timescales, we introduce TMFR, a Two-timescale Multi-agent Federated Reinforcement Learning algorithm that enables UAVs to collaboratively learn policies for both spatial navigation and incentive allocation. Experimental evaluations demonstrate that TMFR achieves 30% faster convergence and 20% higher data quality compared to baselines that optimize only subsets of the problem. These results highlight its suitability for next-generation smart city applications.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.