Aditya Kumar Mandal,Shubham Basera,William A Goddard,Prabal K Maiti
{"title":"Unveiling the charge transport blockade in the D2 branch of the photosystem II reaction center.","authors":"Aditya Kumar Mandal,Shubham Basera,William A Goddard,Prabal K Maiti","doi":"10.1073/pnas.2405023122","DOIUrl":null,"url":null,"abstract":"Photosynthesis, the fundamental process sustaining life on Earth, depends on the photosystem II (PSII) reaction center's ability to initiate the charge transport process. In this study, we have investigated this charge transport process with a focus on the dissimilarity between the two branches of the PSII reaction center, D1 and D2. Utilizing Marcus theory, we have calculated the reorganization energies and activation barriers for all the key steps involved in the charge transport process. Our analysis reveals that while both D1 and D2 branches exhibit similarities in the initial stages, the rate-determining step in the D2 branch has a significantly higher activation barrier (0.2 eV) than D1 branch (0.1 eV), suggesting a much less favorable energetic landscape. Further, the calculation of current-voltage (I-V) characteristics confirms the higher resistance in the D2 branch compared to the D1 branch, emphasizing its nonconductive nature. This comprehensive approach combining energetic and kinetic considerations provides valuable insights into the asymmetry of charge transport in PSII that may be important in optimizing PSII functionality.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"3 1","pages":"e2405023122"},"PeriodicalIF":9.1000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2405023122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Photosynthesis, the fundamental process sustaining life on Earth, depends on the photosystem II (PSII) reaction center's ability to initiate the charge transport process. In this study, we have investigated this charge transport process with a focus on the dissimilarity between the two branches of the PSII reaction center, D1 and D2. Utilizing Marcus theory, we have calculated the reorganization energies and activation barriers for all the key steps involved in the charge transport process. Our analysis reveals that while both D1 and D2 branches exhibit similarities in the initial stages, the rate-determining step in the D2 branch has a significantly higher activation barrier (0.2 eV) than D1 branch (0.1 eV), suggesting a much less favorable energetic landscape. Further, the calculation of current-voltage (I-V) characteristics confirms the higher resistance in the D2 branch compared to the D1 branch, emphasizing its nonconductive nature. This comprehensive approach combining energetic and kinetic considerations provides valuable insights into the asymmetry of charge transport in PSII that may be important in optimizing PSII functionality.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.