Jinchang Wang,Alessandro Innocenti,Hang Wei,Yuanyuan Zhang,Jingsong Peng,Yuanting Qiao,Weifeng Huang,Jian Liu
{"title":"Scalable and Sustainable Chitosan/Carbon Nanotubes Composite Protective Layer for Dendrite-Free and Long-Cycling Aqueous Zinc-Metal Batteries.","authors":"Jinchang Wang,Alessandro Innocenti,Hang Wei,Yuanyuan Zhang,Jingsong Peng,Yuanting Qiao,Weifeng Huang,Jian Liu","doi":"10.1007/s40820-025-01837-7","DOIUrl":null,"url":null,"abstract":"Rechargeable aqueous zinc (Zn)-metal batteries hold great promise for next-generation energy storage systems. However, their practical application is hindered by several challenges, including dendrite formation, corrosion, and the competing hydrogen evolution reaction. To address these issues, we designed and fabricated a composite protective layer for Zn anodes by integrating carbon nanotubes (CNTs) with chitosan through a simple and scalable scraping process. The CNTs ensure uniform electric field distribution due to their high electrical conductivity, while protonated chitosan regulates ion transport and suppresses dendrite formation at the anode interface. The chitosan/CNTs composite layer also facilitates smooth Zn2+ deposition, enhancing the stability and reversibility of the Zn anode. As a result, the chitosan/CNTs @ Zn anode demonstrates exceptional cycling stability, achieving over 3000 h of plating/stripping with minimal degradation. When paired with a V2O5 cathode, the composite-protected anode significantly improves the cycle stability and energy density of the full cell. Techno-economic analysis confirms that batteries incorporating the chitosan/CNTs protective layer outperform those with bare Zn anodes in terms of energy density and overall performance under optimized conditions. This work provides a scalable and sustainable strategy to overcome the critical challenges of aqueous Zn-metal batteries, paving the way for their practical application in next-generation energy storage systems.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"9 1","pages":"326"},"PeriodicalIF":36.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01837-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Rechargeable aqueous zinc (Zn)-metal batteries hold great promise for next-generation energy storage systems. However, their practical application is hindered by several challenges, including dendrite formation, corrosion, and the competing hydrogen evolution reaction. To address these issues, we designed and fabricated a composite protective layer for Zn anodes by integrating carbon nanotubes (CNTs) with chitosan through a simple and scalable scraping process. The CNTs ensure uniform electric field distribution due to their high electrical conductivity, while protonated chitosan regulates ion transport and suppresses dendrite formation at the anode interface. The chitosan/CNTs composite layer also facilitates smooth Zn2+ deposition, enhancing the stability and reversibility of the Zn anode. As a result, the chitosan/CNTs @ Zn anode demonstrates exceptional cycling stability, achieving over 3000 h of plating/stripping with minimal degradation. When paired with a V2O5 cathode, the composite-protected anode significantly improves the cycle stability and energy density of the full cell. Techno-economic analysis confirms that batteries incorporating the chitosan/CNTs protective layer outperform those with bare Zn anodes in terms of energy density and overall performance under optimized conditions. This work provides a scalable and sustainable strategy to overcome the critical challenges of aqueous Zn-metal batteries, paving the way for their practical application in next-generation energy storage systems.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.