Modeling the vertebrate regulatory sequence landscape by UUATAC-seq and deep learning

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cell Pub Date : 2025-07-08 DOI:10.1016/j.cell.2025.06.020
Xiaoping Han, Hanyu Wu, Xueyi Wang, Daiyuan Liu, Yuting Fu, Lei Yang, Renying Wang, Peijing Zhang, Jingjing Wang, Lifeng Ma, Jizhong Mao, Lina Zhou, Siqi Wang, Xinlian Zhang, Mengmeng Jiang, Xinru Wang, Guoxia Wen, Danmei Jia, Guoji Guo
{"title":"Modeling the vertebrate regulatory sequence landscape by UUATAC-seq and deep learning","authors":"Xiaoping Han, Hanyu Wu, Xueyi Wang, Daiyuan Liu, Yuting Fu, Lei Yang, Renying Wang, Peijing Zhang, Jingjing Wang, Lifeng Ma, Jizhong Mao, Lina Zhou, Siqi Wang, Xinlian Zhang, Mengmeng Jiang, Xinru Wang, Guoxia Wen, Danmei Jia, Guoji Guo","doi":"10.1016/j.cell.2025.06.020","DOIUrl":null,"url":null,"abstract":"The regulatory sequences of vertebrate genomes remain incompletely understood. To address this, we developed an ultra-throughput, ultra-sensitive single-nucleus assay for transposase-accessible chromatin using sequencing (UUATAC-seq) protocol that enables the construction of chromatin accessibility landscapes for one species in a 1-day experiment. Using UUATAC-seq, we mapped candidate <em>cis-</em>regulatory elements (cCREs) across five representative vertebrate species. Our analysis revealed that genome size differences across species influence the number but not the size of cCREs. We introduced Nvwa <em>cis</em>-regulatory element (NvwaCE), a mega-task deep-learning model designed to interpret <em>cis-</em>regulatory grammar and predict cCRE landscapes directly from genomic sequences with high precision. NvwaCE demonstrated that regulatory grammar is more conserved than nucleotide sequences and that this grammar organizes cCREs into distinct functional modules. Moreover, NvwaCE accurately predicted the effects of synthetic mutations on lineage-specific cCRE function, aligning with causal quantitative trait loci (QTLs) and genome editing results. Together, our study provides a valuable resource for decoding the vertebrate regulatory language.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"3 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.06.020","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The regulatory sequences of vertebrate genomes remain incompletely understood. To address this, we developed an ultra-throughput, ultra-sensitive single-nucleus assay for transposase-accessible chromatin using sequencing (UUATAC-seq) protocol that enables the construction of chromatin accessibility landscapes for one species in a 1-day experiment. Using UUATAC-seq, we mapped candidate cis-regulatory elements (cCREs) across five representative vertebrate species. Our analysis revealed that genome size differences across species influence the number but not the size of cCREs. We introduced Nvwa cis-regulatory element (NvwaCE), a mega-task deep-learning model designed to interpret cis-regulatory grammar and predict cCRE landscapes directly from genomic sequences with high precision. NvwaCE demonstrated that regulatory grammar is more conserved than nucleotide sequences and that this grammar organizes cCREs into distinct functional modules. Moreover, NvwaCE accurately predicted the effects of synthetic mutations on lineage-specific cCRE function, aligning with causal quantitative trait loci (QTLs) and genome editing results. Together, our study provides a valuable resource for decoding the vertebrate regulatory language.

Abstract Image

基于UUATAC-seq和深度学习的脊椎动物调控序列景观建模
脊椎动物基因组的调控序列仍然不完全清楚。为了解决这个问题,我们开发了一种使用测序(UUATAC-seq)协议的超通量,超灵敏的单核转座酶可达染色质检测方法,可以在1天的实验中构建一个物种的染色质可达性景观。使用UUATAC-seq,我们绘制了五个代表性脊椎动物物种的候选顺式调控元件(cCREs)。我们的分析表明,不同物种之间的基因组大小差异会影响cCREs的数量,但不会影响其大小。我们引入了Nvwa顺式调控元件(NvwaCE),这是一个大型任务深度学习模型,旨在解释顺式调控语法,并直接从基因组序列中高精度地预测cCRE景观。NvwaCE证明了调节语法比核苷酸序列更保守,并且该语法将cCREs组织成不同的功能模块。此外,NvwaCE准确预测了合成突变对谱系特异性cCRE功能的影响,与因果数量性状位点(quantitative trait loci, qtl)和基因组编辑结果一致。总之,我们的研究为解码脊椎动物调节语言提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信