Nathan J. Spix, Walid Abi Habib, Zhouwei Zhang, Emily Eugster, Hsiao-yun Milliron, David Sokol, KwangHo Lee, Paula A. Nolte, Jamie L. Endicott, Kelly F. Krzyzanowski, Toshinori Hinoue, Jacob Morrison, Benjamin K. Johnson, Wanding Zhou, Hui Shen, Peter W. Laird
{"title":"High-coverage allele-resolved single-cell DNA methylation profiling reveals cell lineage, X-inactivation state, and replication dynamics","authors":"Nathan J. Spix, Walid Abi Habib, Zhouwei Zhang, Emily Eugster, Hsiao-yun Milliron, David Sokol, KwangHo Lee, Paula A. Nolte, Jamie L. Endicott, Kelly F. Krzyzanowski, Toshinori Hinoue, Jacob Morrison, Benjamin K. Johnson, Wanding Zhou, Hui Shen, Peter W. Laird","doi":"10.1038/s41467-025-61589-1","DOIUrl":null,"url":null,"abstract":"<p>DNA methylation patterns at crucial short sequence features, such as enhancers and promoters, may convey key information about cell lineage and state. The need for high-resolution single-cell DNA methylation profiling has therefore become increasingly apparent. Existing single-cell whole-genome bisulfite sequencing (scWGBS) studies have both methodological and analytical shortcomings. Inefficient library generation and low CpG coverage mostly preclude direct cell-to-cell comparisons and necessitate the use of cluster-based analyses, imputation of methylation states, or averaging of DNA methylation measurements across large genomic bins. Such summarization methods obscure the interpretation of methylation states at individual regulatory elements and limit our ability to discern important cell-to-cell differences. We report an improved scWGBS method, single-cell Deep and Efficient Epigenomic Profiling of methyl-C (scDEEP-mC), which offers efficient generation of high-coverage libraries. scDEEP-mC allows for cell type identification, genome-wide profiling of hemi-methylation, and allele-resolved analysis of X-inactivation epigenetics in single cells. Furthermore, we combine methylation and copy-number data from scDEEP-mC to identify single, actively replicating cells and profile DNA methylation maintenance dynamics during and after DNA replication. These analyses unlock further avenues for exploring DNA methylation regulation and dynamics and illustrate the power of high-complexity, highly efficient scWGBS library construction as facilitated by scDEEP-mC.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"12 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61589-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
DNA methylation patterns at crucial short sequence features, such as enhancers and promoters, may convey key information about cell lineage and state. The need for high-resolution single-cell DNA methylation profiling has therefore become increasingly apparent. Existing single-cell whole-genome bisulfite sequencing (scWGBS) studies have both methodological and analytical shortcomings. Inefficient library generation and low CpG coverage mostly preclude direct cell-to-cell comparisons and necessitate the use of cluster-based analyses, imputation of methylation states, or averaging of DNA methylation measurements across large genomic bins. Such summarization methods obscure the interpretation of methylation states at individual regulatory elements and limit our ability to discern important cell-to-cell differences. We report an improved scWGBS method, single-cell Deep and Efficient Epigenomic Profiling of methyl-C (scDEEP-mC), which offers efficient generation of high-coverage libraries. scDEEP-mC allows for cell type identification, genome-wide profiling of hemi-methylation, and allele-resolved analysis of X-inactivation epigenetics in single cells. Furthermore, we combine methylation and copy-number data from scDEEP-mC to identify single, actively replicating cells and profile DNA methylation maintenance dynamics during and after DNA replication. These analyses unlock further avenues for exploring DNA methylation regulation and dynamics and illustrate the power of high-complexity, highly efficient scWGBS library construction as facilitated by scDEEP-mC.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.