Pure spin current polarizer enabled by antiferromagnetic insulator

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hetian Chen, Dingsong Jiang, Yujun Zhang, Xiaofu Qiu, Yuhan Liang, Qinghua Zhang, Fangyuan Zhu, Takuo Ohkochi, Mingfeng Chen, Yue Wang, Jingchun Liu, Qing He, Jing Ma, Pu Yu, Yuanhua Lin, Tianxiang Nan, Di Yi
{"title":"Pure spin current polarizer enabled by antiferromagnetic insulator","authors":"Hetian Chen, Dingsong Jiang, Yujun Zhang, Xiaofu Qiu, Yuhan Liang, Qinghua Zhang, Fangyuan Zhu, Takuo Ohkochi, Mingfeng Chen, Yue Wang, Jingchun Liu, Qing He, Jing Ma, Pu Yu, Yuanhua Lin, Tianxiang Nan, Di Yi","doi":"10.1038/s41467-025-61490-x","DOIUrl":null,"url":null,"abstract":"<p>Pure spin current enables the transport of spin information without charge flow, providing opportunities for next-generation information technologies. A pure spin current polarizer, capable of controlling both its transmittance and spin polarization, is critical for the development of spintronics; however, it has not yet been demonstrated. Here, we demonstrate a highly efficient pure spin current polarizer at room temperature using a single-domain antiferromagnetic insulator film, through structural engineering and spin-lattice coupling. Our device exhibits a large differential magnon current transmittance at room temperature. Remarkably, we find that the spin polarization of the transmitted magnon current aligns with the Néel vector of the polarizer. This enables a large modulation of damping-like torque and generation of out-of-plane-polarized magnon current, offering alternative routes for developing energy-efficient spintronic devices. We anticipate that this pure spin current polarizer will serve as a building block for spintronics based on pure spin current.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"21 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61490-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pure spin current enables the transport of spin information without charge flow, providing opportunities for next-generation information technologies. A pure spin current polarizer, capable of controlling both its transmittance and spin polarization, is critical for the development of spintronics; however, it has not yet been demonstrated. Here, we demonstrate a highly efficient pure spin current polarizer at room temperature using a single-domain antiferromagnetic insulator film, through structural engineering and spin-lattice coupling. Our device exhibits a large differential magnon current transmittance at room temperature. Remarkably, we find that the spin polarization of the transmitted magnon current aligns with the Néel vector of the polarizer. This enables a large modulation of damping-like torque and generation of out-of-plane-polarized magnon current, offering alternative routes for developing energy-efficient spintronic devices. We anticipate that this pure spin current polarizer will serve as a building block for spintronics based on pure spin current.

Abstract Image

反铁磁绝缘体使能纯自旋电流极化器
纯自旋电流使自旋信息在没有电荷流的情况下传输,为下一代信息技术提供了机会。能够同时控制其透射率和自旋极化的纯自旋电流偏振器对自旋电子学的发展至关重要;然而,它还没有被证明。在这里,我们通过结构工程和自旋晶格耦合,展示了在室温下使用单畴反铁磁绝缘体薄膜的高效纯自旋电流极化器。我们的装置在室温下表现出较大的差分磁振子电流透过率。值得注意的是,我们发现透射磁振子电流的自旋极化与偏振器的nsamel矢量一致。这使得阻尼类扭矩的大调制和面外极化磁振子电流的产生成为可能,为开发节能自旋电子器件提供了替代途径。我们期望这种纯自旋电流极化器将作为基于纯自旋电流的自旋电子学的基石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信