Copper anchored MXene regulated metal-oxide interfaces for the CO2 electrocatalytic conversion

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Linhao Liu, Hailong Li, Tianbin Yuan, Jianwen Zhang, Kangning Xue, Juan Hou, Guozhong Cao
{"title":"Copper anchored MXene regulated metal-oxide interfaces for the CO2 electrocatalytic conversion","authors":"Linhao Liu, Hailong Li, Tianbin Yuan, Jianwen Zhang, Kangning Xue, Juan Hou, Guozhong Cao","doi":"10.1016/j.jmst.2025.04.087","DOIUrl":null,"url":null,"abstract":"Electrocatalytic conversion of CO<sub>2</sub> into CO is a promising strategy for mitigating the energy crisis, but simultaneously achieving high selectivity and activity of electrocatalysts remains challenging. Herein, we construct a catalyst with a special interface structure featuring abundant unsaturated coordination surface sites that boost CO<sub>2</sub> conversion. The Cu-Ti<sub>3</sub>C<sub>2</sub>T<em><sub>x</sub></em>/ZnO catalyst with interface coupling structure achieved high CO Faraday efficiency (FE<sub>CO</sub>=90.71% in H-Cell, FE<sub>CO</sub>=98.4% in Flow Cell), and maintained high FE<sub>CO</sub> (greater than 85.2%) and stable current density for 20 h under high current conditions (200 mA/cm<sup>2</sup>), demonstrating excellent selectivity and stability for the conversion of CO<sub>2</sub> to CO. In situ infrared and DFT (density functional theory) calculations reveal that this remarkable performance is attributed to the special interface coupling of Cu-Ti<sub>3</sub>C<sub>2</sub>T<em><sub>x</sub></em>/ZnO, which can improve the selectivity of the *COOH intermediates (formation energy: 0.45→0.33 eV) and suppress hydrogen evolution reactions (HER) by increasing electronic donation of Cu and upward shift of the d-band center relative to the Fermi level within ZnO regulated Cu-Ti<sub>3</sub>C<sub>2</sub>T<em><sub>x</sub></em> interface. This study successfully demonstrated a practical strategy for MXene-based interface interaction with metal oxide regulation and provided new insights for the design and preparation of high-performance electrocatalysts for CO<sub>2</sub> reduction.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"2 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.04.087","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic conversion of CO2 into CO is a promising strategy for mitigating the energy crisis, but simultaneously achieving high selectivity and activity of electrocatalysts remains challenging. Herein, we construct a catalyst with a special interface structure featuring abundant unsaturated coordination surface sites that boost CO2 conversion. The Cu-Ti3C2Tx/ZnO catalyst with interface coupling structure achieved high CO Faraday efficiency (FECO=90.71% in H-Cell, FECO=98.4% in Flow Cell), and maintained high FECO (greater than 85.2%) and stable current density for 20 h under high current conditions (200 mA/cm2), demonstrating excellent selectivity and stability for the conversion of CO2 to CO. In situ infrared and DFT (density functional theory) calculations reveal that this remarkable performance is attributed to the special interface coupling of Cu-Ti3C2Tx/ZnO, which can improve the selectivity of the *COOH intermediates (formation energy: 0.45→0.33 eV) and suppress hydrogen evolution reactions (HER) by increasing electronic donation of Cu and upward shift of the d-band center relative to the Fermi level within ZnO regulated Cu-Ti3C2Tx interface. This study successfully demonstrated a practical strategy for MXene-based interface interaction with metal oxide regulation and provided new insights for the design and preparation of high-performance electrocatalysts for CO2 reduction.

Abstract Image

铜锚定MXene调节金属氧化物界面的二氧化碳电催化转化
电催化将CO2转化为CO是缓解能源危机的一种很有前途的策略,但同时实现高选择性和高活性的电催化剂仍然是一个挑战。在此,我们构建了一种具有特殊界面结构的催化剂,该催化剂具有丰富的不饱和配位表面位点,可以促进二氧化碳的转化。具有界面耦合结构的Cu-Ti3C2Tx/ZnO催化剂具有较高的CO法拉第效率(h -Cell中FECO=90.71%, Flow Cell中FECO=98.4%),在高电流条件下(200 mA/cm2)可保持较高的FECO(大于85.2%)和稳定的电流密度20 h。原位红外和DFT(密度功能理论)计算表明,这种卓越的性能归因于Cu-Ti3C2Tx/ZnO的特殊界面耦合,它可以提高*COOH中间体(生成能:在ZnO调控的Cu- ti3c2tx界面内,通过增加Cu的电子给能和d带中心相对于费米能级的上移来抑制析氢反应(HER)。该研究成功地展示了基于mxeni的界面相互作用与金属氧化物调控的实用策略,为设计和制备高性能的CO2还原电催化剂提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信