Ionically conductive NiFe2O4/CNTs organohydrogel composite for boosting efficient electromagnetic wave absorption

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuelin Lv, Hui Zhao, Jieyun Zhang, Tong Gao, Qiang Zhuang, Jie Kong, Lixin Chen
{"title":"Ionically conductive NiFe2O4/CNTs organohydrogel composite for boosting efficient electromagnetic wave absorption","authors":"Yuelin Lv, Hui Zhao, Jieyun Zhang, Tong Gao, Qiang Zhuang, Jie Kong, Lixin Chen","doi":"10.1016/j.jmst.2025.05.064","DOIUrl":null,"url":null,"abstract":"Gel-based electromagnetic wave (EMW) absorbing materials demonstrate substantial potential in wearable electronics and soft robotics. However, it remains challenging to simultaneously achieve superior impedance matching and efficient electromagnetic energy dissipation through benefiting potential synergies among multifunctional attributes. In this work, a novel salting-out organohydrogel containing 0.5 wt.% NiFe<sub>2</sub>O<sub>4</sub>/CNTs was successfully synthesized, with a three-dimensional (3D) porous cross-linked structure and multiple heterointerfaces, which dramatically boosts the interfacial effects and improves the polarization loss. Meanwhile, dense polymer networks impose steric hindrance that elevates the energy barrier for molecular reorientation and ionic transport resistance, synergistically amplifying both polarization and ohmic conductive losses. Taking advantage of the features of considerable multiple polarization loss and optimized impedance matching, the as-prepared S-0.5 NiFe<sub>2</sub>O<sub>4</sub>/CNTs organohydrogel has achieved exceptional EMW absorption performance (the minimum reflection loss RL = −48.31 dB and the maximum adequate absorption bandwidth EAB reaches 6.16 GHz). This as-prepared organohydrogel exhibits optimal radar cross-section (RCS) reduction performance with a maximum value of 21.63 dB m<sup>2</sup>. Such excellent electromagnetic characteristics deepen the mechanistic understanding of internal attenuation processes in gel-based EMW absorbers and provide novel design principles for advancing next-generation flexible electronics.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"9 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.05.064","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gel-based electromagnetic wave (EMW) absorbing materials demonstrate substantial potential in wearable electronics and soft robotics. However, it remains challenging to simultaneously achieve superior impedance matching and efficient electromagnetic energy dissipation through benefiting potential synergies among multifunctional attributes. In this work, a novel salting-out organohydrogel containing 0.5 wt.% NiFe2O4/CNTs was successfully synthesized, with a three-dimensional (3D) porous cross-linked structure and multiple heterointerfaces, which dramatically boosts the interfacial effects and improves the polarization loss. Meanwhile, dense polymer networks impose steric hindrance that elevates the energy barrier for molecular reorientation and ionic transport resistance, synergistically amplifying both polarization and ohmic conductive losses. Taking advantage of the features of considerable multiple polarization loss and optimized impedance matching, the as-prepared S-0.5 NiFe2O4/CNTs organohydrogel has achieved exceptional EMW absorption performance (the minimum reflection loss RL = −48.31 dB and the maximum adequate absorption bandwidth EAB reaches 6.16 GHz). This as-prepared organohydrogel exhibits optimal radar cross-section (RCS) reduction performance with a maximum value of 21.63 dB m2. Such excellent electromagnetic characteristics deepen the mechanistic understanding of internal attenuation processes in gel-based EMW absorbers and provide novel design principles for advancing next-generation flexible electronics.

Abstract Image

离子导电NiFe2O4/ cnt有机水凝胶复合材料提高电磁波吸收效率
凝胶基电磁波吸收材料在可穿戴电子产品和软机器人领域显示出巨大的潜力。然而,通过利用多功能属性之间的潜在协同效应,同时实现卓越的阻抗匹配和高效的电磁能量耗散仍然是一个挑战。本文成功合成了一种含0.5 wt.% NiFe2O4/CNTs的新型盐析有机水凝胶,具有三维(3D)多孔交联结构和多种异质界面,显著提高了界面效应,改善了极化损耗。同时,密集的聚合物网络施加空间位阻,提高了分子重定向和离子传输阻力的能量垒,协同放大了极化和欧姆导电损失。制备的S-0.5 NiFe2O4/CNTs有机水凝胶利用相当大的多极化损耗和优化的阻抗匹配特性,获得了优异的EMW吸收性能(最小反射损耗RL = −48.31 dB,最大吸收带宽EAB达到6.16 GHz)。这种制备的有机水凝胶具有最佳的雷达横截面(RCS)降低性能,最大值为21.63 dB m2。这种优异的电磁特性加深了对凝胶基EMW吸收器内部衰减过程的机理理解,并为推进下一代柔性电子产品提供了新的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信