{"title":"Rab27a regulates the transport of influenza virus membrane proteins to the plasma membrane","authors":"Tong Chen, Aotian Ouyang, Jiahui Zou, Yi Feng, Changsong Wu, Meijun Jiang, Shaoyu Tu, Ling Ding, Yanqing Cheng, Wenshuo Hu, Wei Sheng, Yanglin Li, Meilin Jin, Huanchun Chen, Hongbo Zhou","doi":"10.1038/s41467-025-61587-3","DOIUrl":null,"url":null,"abstract":"<p>The molecular mechanisms underlying the transport of influenza A virus (IAV) membrane proteins to the cell surface remain largely unclear. In this study, siRNA screening identifies Rab27a as a critical host factor regulating this transport process. GTP-bound Rab27a operates via its effectors, synaptotagmin-like protein 1 (SYTL1) and SYTL4, to facilitate the transport of vesicles carrying viral membrane proteins to the plasma membrane. Absence of Rab27a or SYTL4 does not block the early stages of the IAV life cycle but restricts viral assembly and budding. Notably, silencing SYTL4 provides superior protection in the female mouse IAV infection model. This investigation elucidates the molecular mechanism by which Rab27a and its effectors modulate the transport of IAV membrane proteins, thereby bridging a critical gap in IAV life cycle research and presenting a potential target for the development of antiviral drugs.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61587-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The molecular mechanisms underlying the transport of influenza A virus (IAV) membrane proteins to the cell surface remain largely unclear. In this study, siRNA screening identifies Rab27a as a critical host factor regulating this transport process. GTP-bound Rab27a operates via its effectors, synaptotagmin-like protein 1 (SYTL1) and SYTL4, to facilitate the transport of vesicles carrying viral membrane proteins to the plasma membrane. Absence of Rab27a or SYTL4 does not block the early stages of the IAV life cycle but restricts viral assembly and budding. Notably, silencing SYTL4 provides superior protection in the female mouse IAV infection model. This investigation elucidates the molecular mechanism by which Rab27a and its effectors modulate the transport of IAV membrane proteins, thereby bridging a critical gap in IAV life cycle research and presenting a potential target for the development of antiviral drugs.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.