Yi Huang, Chaoyi He, Yunzhi Ling, Ning Ge, J. Joshua Yang, Miao Hu, Linda Katehi, Qiangfei Xia
{"title":"Radiofrequency signal processing with a memristive system-on-a-chip","authors":"Yi Huang, Chaoyi He, Yunzhi Ling, Ning Ge, J. Joshua Yang, Miao Hu, Linda Katehi, Qiangfei Xia","doi":"10.1038/s41928-025-01409-y","DOIUrl":null,"url":null,"abstract":"<p>The development of wireless communication technology and the Internet of Things requires radiofrequency communication systems with higher frequencies and faster communication speeds. However, traditional digital processing platforms—which involve high-speed analogue-to-digital converters, intensive data movement and complex digital computation in software-defined radio systems—suffer from high energy consumption and latency. Signal processing in the analogue domain using non-volatile memristive devices can reduce data movement and energy consumption, but the development of system-level designs remains limited. Here we report a radiofrequency signal processing system that is based on analogue in-memory computing within a multicore memristive system-on-a-chip. With the approach, we demonstrate an analogue discrete Fourier transform for spectrum analysis, a mixer-free demodulator for in-phase and quadrature demodulation, and analogue neural networks for radiofrequency transmitter identification and anomaly detection. The memristive system-on-a-chip offers an identification accuracy of over 90% and is up to 6.8 times more energy efficient and up to 6.2 times faster than traditional digital processing platforms.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"8 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-025-01409-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The development of wireless communication technology and the Internet of Things requires radiofrequency communication systems with higher frequencies and faster communication speeds. However, traditional digital processing platforms—which involve high-speed analogue-to-digital converters, intensive data movement and complex digital computation in software-defined radio systems—suffer from high energy consumption and latency. Signal processing in the analogue domain using non-volatile memristive devices can reduce data movement and energy consumption, but the development of system-level designs remains limited. Here we report a radiofrequency signal processing system that is based on analogue in-memory computing within a multicore memristive system-on-a-chip. With the approach, we demonstrate an analogue discrete Fourier transform for spectrum analysis, a mixer-free demodulator for in-phase and quadrature demodulation, and analogue neural networks for radiofrequency transmitter identification and anomaly detection. The memristive system-on-a-chip offers an identification accuracy of over 90% and is up to 6.8 times more energy efficient and up to 6.2 times faster than traditional digital processing platforms.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.