{"title":"Comparative efficacy of individually and combined application of compost, biochar, and bentonite on Ni dynamics in a calcareous soil","authors":"Hamid Reza Boostani, Zahra Jalalpour, Ali Behpouri, Ehsan Bijanzadeh, Mahdi Najafi-Ghiri","doi":"10.5194/egusphere-2025-2147","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> In Iran, a considerable proportion of agricultural soils are contaminated with various heavy metals (HMs), including nickel (Ni), necessitating remediation to mitigate their transfer into the food chain. However, there remains a scarcity of research on the effectiveness of applying organic and inorganic materials, either individually or in combination, for Ni immobilization in contaminated calcareous soils. To address this gap, an incubation experiment as completely randomized design with three replications was conducted to compare the effect of different soil amendments, either individually or combined (municipal solid waste compost (M), bentonite (B), municipal solid waste compost biochar (MB), M+B, MB+B, MB+M each applied at 2 % wt.) on Ni immobilization in a calcareous soil with three Ni contamination levels (0 (Ni<sub>0</sub>), 150 mg kg<sup>-1 </sup>(Ni<sub>1</sub>) and 300 mg kg<sup>-1</sup> (Ni<sub>2</sub>). The study employed analytical techniques such as SEM-EDX, XRD, FTIR, sequential extraction, and DTPA-release kinetics to assess the efficiency of these amendments on stabilizing Ni in the soil. Elevating Ni levels from Ni<sub>0</sub> to Ni<sub>2</sub> increased Ni concentrations across all soil fractions, especially in Fe/Mn oxides (FeMnOx) and organic matter (OM). All amendments except M enhanced Ni immobilization by converting more labile fractions (WsEx, Car, FeMnOx) into residual (Res) form. While combined amendments were not more effective than single treatments, MB was the most efficient in stabilizing Ni. MB also exhibited the lowest 'a' and highest 'b' values attributed to the power function kinetics model, indicating superior Ni desorption reduction. These finding are likely due to its alkaline pH, ash content, and phosphorus content, which facilitate Ni precipitation. In contrast, M increased Ni desorption by raising its bioavailability (WsEx and Car fractions). The combined application of biochar (MB) with either bentonite (B) or compost (M) did not exhibit synergistic effects on the immobilization of Ni in the soil. In conclusion, the independent application of municipal solid waste-derived biochar appears to be a potentially effective amendment for enhancing Ni immobilization in contaminated calcareous soils.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"18 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2025-2147","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. In Iran, a considerable proportion of agricultural soils are contaminated with various heavy metals (HMs), including nickel (Ni), necessitating remediation to mitigate their transfer into the food chain. However, there remains a scarcity of research on the effectiveness of applying organic and inorganic materials, either individually or in combination, for Ni immobilization in contaminated calcareous soils. To address this gap, an incubation experiment as completely randomized design with three replications was conducted to compare the effect of different soil amendments, either individually or combined (municipal solid waste compost (M), bentonite (B), municipal solid waste compost biochar (MB), M+B, MB+B, MB+M each applied at 2 % wt.) on Ni immobilization in a calcareous soil with three Ni contamination levels (0 (Ni0), 150 mg kg-1 (Ni1) and 300 mg kg-1 (Ni2). The study employed analytical techniques such as SEM-EDX, XRD, FTIR, sequential extraction, and DTPA-release kinetics to assess the efficiency of these amendments on stabilizing Ni in the soil. Elevating Ni levels from Ni0 to Ni2 increased Ni concentrations across all soil fractions, especially in Fe/Mn oxides (FeMnOx) and organic matter (OM). All amendments except M enhanced Ni immobilization by converting more labile fractions (WsEx, Car, FeMnOx) into residual (Res) form. While combined amendments were not more effective than single treatments, MB was the most efficient in stabilizing Ni. MB also exhibited the lowest 'a' and highest 'b' values attributed to the power function kinetics model, indicating superior Ni desorption reduction. These finding are likely due to its alkaline pH, ash content, and phosphorus content, which facilitate Ni precipitation. In contrast, M increased Ni desorption by raising its bioavailability (WsEx and Car fractions). The combined application of biochar (MB) with either bentonite (B) or compost (M) did not exhibit synergistic effects on the immobilization of Ni in the soil. In conclusion, the independent application of municipal solid waste-derived biochar appears to be a potentially effective amendment for enhancing Ni immobilization in contaminated calcareous soils.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).