Synthetic In‐Plane Magnetic Fields in Topological Plasmonic Insulator with Detachable Identical Meta‐Atoms

IF 10 1区 物理与天体物理 Q1 OPTICS
Siqi Huang, Long Chen, Zhihao Lan, Qing Chun Yin, Shi Long Qin, Jian Wei You, Tie Jun Cui
{"title":"Synthetic In‐Plane Magnetic Fields in Topological Plasmonic Insulator with Detachable Identical Meta‐Atoms","authors":"Siqi Huang, Long Chen, Zhihao Lan, Qing Chun Yin, Shi Long Qin, Jian Wei You, Tie Jun Cui","doi":"10.1002/lpor.202500280","DOIUrl":null,"url":null,"abstract":"Synthetic magnetic fields for photons enable photonic systems to mimic the behavior of electrons in real magnetic fields, providing unprecedented opportunities to explore novel optical phenomena and practical applications. Unlike previous methods relying on non‐identical unit cells to modulate the local band gap of each unit cell, it is demonstrated that simply rotating identical unit cells (or meta‐atoms) without inversion symmetry enables precise control over the local band gap of the Dirac cone (i.e., the Dirac mass). This approach takes advantage of the detachable nature of identical meta‐atoms and the reconfigurable feature of the metasurface, allowing convenient assembly and flexible Dirac mass manipulation. By spatially modulating the rotation angles of the meta‐atoms, the chiral zeroth Landau level can be induced, a topologically protected one‐way propagating bulk state, enabling the design of flexible Dirac waveguides. Experimental tests confirm the transmission characteristics of the Dirac waveguide and chiral zeroth Landau modes. This system realizes chiral Landau levels in optical metasurfaces with identical meta‐atoms, enabling precise pseudo‐magnetic field control. Without breaking time‐reversal symmetry, the proposed structure has the potential for designing integrated photonic devices and exploring intriguing physical phenomena through flexible control of the synthetic magnetic fields.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"104 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500280","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic magnetic fields for photons enable photonic systems to mimic the behavior of electrons in real magnetic fields, providing unprecedented opportunities to explore novel optical phenomena and practical applications. Unlike previous methods relying on non‐identical unit cells to modulate the local band gap of each unit cell, it is demonstrated that simply rotating identical unit cells (or meta‐atoms) without inversion symmetry enables precise control over the local band gap of the Dirac cone (i.e., the Dirac mass). This approach takes advantage of the detachable nature of identical meta‐atoms and the reconfigurable feature of the metasurface, allowing convenient assembly and flexible Dirac mass manipulation. By spatially modulating the rotation angles of the meta‐atoms, the chiral zeroth Landau level can be induced, a topologically protected one‐way propagating bulk state, enabling the design of flexible Dirac waveguides. Experimental tests confirm the transmission characteristics of the Dirac waveguide and chiral zeroth Landau modes. This system realizes chiral Landau levels in optical metasurfaces with identical meta‐atoms, enabling precise pseudo‐magnetic field control. Without breaking time‐reversal symmetry, the proposed structure has the potential for designing integrated photonic devices and exploring intriguing physical phenomena through flexible control of the synthetic magnetic fields.
具有可分离的相同元原子的拓扑等离子体绝缘体的合成面内磁场
光子合成磁场使光子系统能够模拟电子在真实磁场中的行为,为探索新的光学现象和实际应用提供了前所未有的机会。不像以前的方法依赖于非相同的单元格来调制每个单元格的局部带隙,研究证明,简单地旋转相同的单元格(或元原子)而不需要反转对称,可以精确控制狄拉克锥的局部带隙(即狄拉克质量)。这种方法利用了相同元原子的可分离特性和元表面的可重构特性,允许方便的组装和灵活的狄拉克质量操作。通过空间调制元原子的旋转角度,可以诱导手性零朗道能级,这是一种拓扑保护的单向传播体态,使柔性狄拉克波导的设计成为可能。实验验证了狄拉克波导和手性零阶朗道模的传输特性。该系统在具有相同元原子的光学超表面上实现了手性朗道能级,实现了精确的伪磁场控制。在不破坏时间反转对称性的情况下,所提出的结构具有设计集成光子器件和通过灵活控制合成磁场探索有趣物理现象的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信