Modulating light level patterns reduces rest/activity disruption associated with shiftwork.

npj Biological Timing and Sleep Pub Date : 2025-01-01 Epub Date: 2025-07-03 DOI:10.1038/s44323-025-00043-3
Varun Mandi, Haley Miller, Jeongkyung Lee, Young-Hwa Goo, Mousumi Moulik, Ke Ma, Antoni Paul, Vijay K Yechoor, Mariana G Figueiro
{"title":"Modulating light level patterns reduces rest/activity disruption associated with shiftwork.","authors":"Varun Mandi, Haley Miller, Jeongkyung Lee, Young-Hwa Goo, Mousumi Moulik, Ke Ma, Antoni Paul, Vijay K Yechoor, Mariana G Figueiro","doi":"10.1038/s44323-025-00043-3","DOIUrl":null,"url":null,"abstract":"<p><p>Long-term exposure to nonstandard work schedules can result in circadian misalignment, which has been linked to a series of maladies. To test whether modulating light patterns reduces shiftwork-induced rest/activity disruptions, 30 male C57BL/6 J mice individually housed in cages outfitted with running wheels were exposed to 6 simulated shiftwork light interventions. Mice experiencing high light levels during shiftwork exhibited a significant decrease in activity compared to low light levels during shiftwork and a conventional 12 L:12D condition, indicating circadian misalignment. In contrast, mice experiencing shiftwork in darkness combined with either modulated evening light pulses or circadian blind, vision-permissive light showed similar levels of rest/activity compared to a 12 L:12D condition, with phasor analysis indicating that their 24-h circadian rest/activity patterns were not misaligned. The results show that exposure to light that permits visibility but is below activation of the circadian system during shiftwork can prevent circadian misalignment.</p>","PeriodicalId":501704,"journal":{"name":"npj Biological Timing and Sleep","volume":"2 1","pages":"27"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226348/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biological Timing and Sleep","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44323-025-00043-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Long-term exposure to nonstandard work schedules can result in circadian misalignment, which has been linked to a series of maladies. To test whether modulating light patterns reduces shiftwork-induced rest/activity disruptions, 30 male C57BL/6 J mice individually housed in cages outfitted with running wheels were exposed to 6 simulated shiftwork light interventions. Mice experiencing high light levels during shiftwork exhibited a significant decrease in activity compared to low light levels during shiftwork and a conventional 12 L:12D condition, indicating circadian misalignment. In contrast, mice experiencing shiftwork in darkness combined with either modulated evening light pulses or circadian blind, vision-permissive light showed similar levels of rest/activity compared to a 12 L:12D condition, with phasor analysis indicating that their 24-h circadian rest/activity patterns were not misaligned. The results show that exposure to light that permits visibility but is below activation of the circadian system during shiftwork can prevent circadian misalignment.

调节光照模式可减少轮班工作对休息/活动的干扰。
长期接触不标准的工作时间表会导致昼夜节律失调,这与一系列疾病有关。为了测试调节光模式是否能减少轮班引起的休息/活动中断,30只雄性C57BL/6 J小鼠被单独饲养在装有跑轮的笼子里,暴露于6种模拟轮班光干预下。与倒班时的低光照水平和常规的12l:12D条件相比,倒班时经历高光照水平的小鼠表现出明显的活动减少,表明昼夜节律失调。相比之下,在黑暗中轮班工作的小鼠,无论是调制的夜晚光脉冲还是昼夜节律盲,视觉允许的光,与12l:12D的条件相比,显示出相似的休息/活动水平,相量分析表明,它们的24小时昼夜节律休息/活动模式并没有错位。结果表明,在轮班工作期间,暴露在允许能见度但低于昼夜节律系统激活的光线下可以防止昼夜节律失调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信