Artifact-robust Deep Learning-based Segmentation of 3D Phase-contrast MR Angiography: A Novel Data Augmentation Approach.

Daiki Tamada, Thekla H Oechtering, Julius F Heidenreich, Jitka Starekova, Eisuke Takai, Scott B Reeder
{"title":"Artifact-robust Deep Learning-based Segmentation of 3D Phase-contrast MR Angiography: A Novel Data Augmentation Approach.","authors":"Daiki Tamada, Thekla H Oechtering, Julius F Heidenreich, Jitka Starekova, Eisuke Takai, Scott B Reeder","doi":"10.2463/mrms.tn.2024-0211","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a novel data augmentation approach to improve deep learning (DL)-based segmentation for 3D phase-contrast magnetic resonance angiography (PC-MRA) images affected by pulsation artifacts. Augmentation was achieved by simulating pulsation artifacts through the addition of periodic errors in k-space magnitude. The approach was evaluated on PC-MRA datasets from 16 volunteers, comparing DL segmentation with and without pulsation artifact augmentation to a level-set algorithm. Results demonstrate that DL methods significantly outperform the level-set approach and that pulsation artifact augmentation further improves segmentation accuracy, especially for images with lower velocity encoding. Quantitative analysis using Dice-Sørensen coefficient, Intersection over Union, and Average Symmetric Surface Distance metrics confirms the effectiveness of the proposed method. This technique shows promise for enhancing vascular segmentation in various anatomical regions affected by pulsation artifacts, potentially improving clinical applications of PC-MRA.</p>","PeriodicalId":94126,"journal":{"name":"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2463/mrms.tn.2024-0211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel data augmentation approach to improve deep learning (DL)-based segmentation for 3D phase-contrast magnetic resonance angiography (PC-MRA) images affected by pulsation artifacts. Augmentation was achieved by simulating pulsation artifacts through the addition of periodic errors in k-space magnitude. The approach was evaluated on PC-MRA datasets from 16 volunteers, comparing DL segmentation with and without pulsation artifact augmentation to a level-set algorithm. Results demonstrate that DL methods significantly outperform the level-set approach and that pulsation artifact augmentation further improves segmentation accuracy, especially for images with lower velocity encoding. Quantitative analysis using Dice-Sørensen coefficient, Intersection over Union, and Average Symmetric Surface Distance metrics confirms the effectiveness of the proposed method. This technique shows promise for enhancing vascular segmentation in various anatomical regions affected by pulsation artifacts, potentially improving clinical applications of PC-MRA.

基于伪影鲁棒深度学习的三维相衬磁共振血管造影分割:一种新的数据增强方法。
本研究提出了一种新的数据增强方法,以改进基于深度学习(DL)的分割,用于受脉动伪影影响的3D相位对比磁共振血管造影(PC-MRA)图像。增强是通过在k空间大小中加入周期性误差来模拟脉动伪影来实现的。在来自16名志愿者的PC-MRA数据集上对该方法进行了评估,将有和没有脉动伪影增强的DL分割与水平集算法进行了比较。结果表明,深度学习方法明显优于水平集方法,脉动伪影增强进一步提高了分割精度,特别是对于低速度编码的图像。使用Dice-Sørensen系数、交集/联合和平均对称表面距离度量的定量分析证实了所提出方法的有效性。该技术有望增强受脉动伪影影响的各种解剖区域的血管分割,潜在地改善PC-MRA的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信