A somatic multiple myeloma mutation unravels a mechanism of oligomerization-mediated product inhibition in GGPPS.

Ruba Yehia, Jasmína Mária Portašiková, Rut Mor Yosef, Benny Da'adoosh, Alan Kádek, Petr Man, Moshe Giladi, Yoni Haitin
{"title":"A somatic multiple myeloma mutation unravels a mechanism of oligomerization-mediated product inhibition in GGPPS.","authors":"Ruba Yehia, Jasmína Mária Portašiková, Rut Mor Yosef, Benny Da'adoosh, Alan Kádek, Petr Man, Moshe Giladi, Yoni Haitin","doi":"10.1111/febs.70181","DOIUrl":null,"url":null,"abstract":"<p><p>Protein prenylation plays a critical role in regulating the cellular localization of small GTPases and is essential for multiple myeloma (MM) pathology. Geranylgeranyl diphosphate synthase (GGPPS), producing a key prenylation moiety, exists in a dimeric or hexameric form, depending on the species. However, the functional significance of this oligomerization remains unclear. Using crystallography, mass spectrometry, and fluorescence spectroscopy, we show that the GGPPS<sup>R235C</sup> mutant-found in the widely studied MM cell line RPMI-8226-exhibits weakened inter-dimer interactions, reduced hexamer stability, and increased apparent substrate affinity and product release kinetics. These effects are even more pronounced in a dimeric mutant, GGPPS<sup>Y246D</sup>, demonstrating that interdimer interactions within the hexamer help stabilize a lid region over the active site, thereby stabilizing product binding in an inhibitory conformation. Together, these findings reveal that hexamerization regulates GGPPS activity through product inhibition and underscore the importance of cell line selection and characterization in drug discovery efforts.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protein prenylation plays a critical role in regulating the cellular localization of small GTPases and is essential for multiple myeloma (MM) pathology. Geranylgeranyl diphosphate synthase (GGPPS), producing a key prenylation moiety, exists in a dimeric or hexameric form, depending on the species. However, the functional significance of this oligomerization remains unclear. Using crystallography, mass spectrometry, and fluorescence spectroscopy, we show that the GGPPSR235C mutant-found in the widely studied MM cell line RPMI-8226-exhibits weakened inter-dimer interactions, reduced hexamer stability, and increased apparent substrate affinity and product release kinetics. These effects are even more pronounced in a dimeric mutant, GGPPSY246D, demonstrating that interdimer interactions within the hexamer help stabilize a lid region over the active site, thereby stabilizing product binding in an inhibitory conformation. Together, these findings reveal that hexamerization regulates GGPPS activity through product inhibition and underscore the importance of cell line selection and characterization in drug discovery efforts.

体细胞多发性骨髓瘤突变揭示了GGPPS中寡聚化介导的产物抑制机制。
蛋白前酰化在调节小gtpase的细胞定位中起着关键作用,对多发性骨髓瘤(MM)病理至关重要。Geranylgeranyl二磷酸合成酶(GGPPS)产生一个关键的戊烯酰化片段,根据物种以二聚体或六聚体的形式存在。然而,这种寡聚化的功能意义尚不清楚。通过晶体学、质谱分析和荧光光谱分析,我们发现GGPPSR235C突变体——在广泛研究的MM细胞系rmi -8226中发现——表现出二聚体间相互作用减弱,六聚体稳定性降低,底物亲和力和产物释放动力学增加。这些作用在二聚体突变体GGPPSY246D中更加明显,表明六聚体内的二聚体相互作用有助于稳定活性位点上方的盖区,从而稳定产物结合的抑制构象。总之,这些发现揭示了六聚化通过产物抑制调节GGPPS活性,并强调了细胞系选择和表征在药物发现工作中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信