Engineered NiO/TiO2 and CuO/NiO/TiO2 heterojunctions for sustainable direct photocatalytic epoxidation of propylene using molecular oxygen.

IF 4.5 0 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nicola Morante, Katia Monzillo, Alessandro Padua, Andrea Muscatello, Diana Sannino, Serena Esposito, Vincenzo Vaiano
{"title":"Engineered NiO/TiO<sub>2</sub> and CuO/NiO/TiO<sub>2</sub> heterojunctions for sustainable direct photocatalytic epoxidation of propylene using molecular oxygen.","authors":"Nicola Morante, Katia Monzillo, Alessandro Padua, Andrea Muscatello, Diana Sannino, Serena Esposito, Vincenzo Vaiano","doi":"10.1186/s11671-025-04296-6","DOIUrl":null,"url":null,"abstract":"<p><p>The selective photocatalytic epoxidation of propylene using molecular oxygen under UV-A irradiation presents a promising sustainable alternative for propylene oxide (PO) production. In this study, NiO/TiO<sub>2</sub> and CuO/NiO/TiO<sub>2</sub> heterojunction photocatalysts were synthesized via the thermal annealing of sol-gel-derived TiO<sub>2</sub> and tested in a fluidized bed photoreactor. Structural and optical characterizations confirmed the successful deposition of NiO onto TiO<sub>2</sub> and highlighted the crucial role of NiO content in optimizing charge separation and catalytic efficiency. Among the NiO/TiO<sub>2</sub> series, the NiO(1.1%)/TiO<sub>2</sub> composite exhibited the lowest photoluminescence intensity, indicating reduced electron-hole recombination, while UV-Vis DRS analysis revealed a red shift in the absorption onset and a reduction in the band gap energy. These features resulted in enhanced light absorption and facilitated charge transfer, leading to superior photocatalytic performance compared to lower and higher NiO loadings. Under irradiation, NiO(1.1%)/TiO<sub>2</sub> achieved a propylene conversion of 52.5%, a selectivity to PO of 83.4%, and a PO yield of 43.8%, confirming its effectiveness in promoting selective epoxidation. The introduction of CuO to form the CuO(1.1%)/NiO(1.1%)/TiO<sub>2</sub> heterojunction further enhanced the catalytic performance, reaching 61% propylene conversion, 92% selectivity to PO, and a PO yield of 56%. The improved activity was attributed to the efficient conversion of molecular oxygen into hydrogen peroxide, which acts as a selective oxidant for epoxide formation. Process optimization revealed that water vapor (1000 ppm) significantly enhanced PO selectivity, while incident light intensity played a crucial role in determining conversion rates. The system exhibited excellent stability over 24 h of continuous operation, with no observable deactivation. Furthermore, an energy efficiency analysis demonstrated an exceptionally low energy consumption of 0.019 kWh per mole of propylene converted, significantly outperforming existing photocatalytic systems. These findings highlight the potential of CuO/NiO/TiO<sub>2</sub>-based photocatalysts, combined with fluidized bed reactors, as an energy-efficient and scalable approach for sustainable PO production.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"20 1","pages":"104"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229979/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-025-04296-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The selective photocatalytic epoxidation of propylene using molecular oxygen under UV-A irradiation presents a promising sustainable alternative for propylene oxide (PO) production. In this study, NiO/TiO2 and CuO/NiO/TiO2 heterojunction photocatalysts were synthesized via the thermal annealing of sol-gel-derived TiO2 and tested in a fluidized bed photoreactor. Structural and optical characterizations confirmed the successful deposition of NiO onto TiO2 and highlighted the crucial role of NiO content in optimizing charge separation and catalytic efficiency. Among the NiO/TiO2 series, the NiO(1.1%)/TiO2 composite exhibited the lowest photoluminescence intensity, indicating reduced electron-hole recombination, while UV-Vis DRS analysis revealed a red shift in the absorption onset and a reduction in the band gap energy. These features resulted in enhanced light absorption and facilitated charge transfer, leading to superior photocatalytic performance compared to lower and higher NiO loadings. Under irradiation, NiO(1.1%)/TiO2 achieved a propylene conversion of 52.5%, a selectivity to PO of 83.4%, and a PO yield of 43.8%, confirming its effectiveness in promoting selective epoxidation. The introduction of CuO to form the CuO(1.1%)/NiO(1.1%)/TiO2 heterojunction further enhanced the catalytic performance, reaching 61% propylene conversion, 92% selectivity to PO, and a PO yield of 56%. The improved activity was attributed to the efficient conversion of molecular oxygen into hydrogen peroxide, which acts as a selective oxidant for epoxide formation. Process optimization revealed that water vapor (1000 ppm) significantly enhanced PO selectivity, while incident light intensity played a crucial role in determining conversion rates. The system exhibited excellent stability over 24 h of continuous operation, with no observable deactivation. Furthermore, an energy efficiency analysis demonstrated an exceptionally low energy consumption of 0.019 kWh per mole of propylene converted, significantly outperforming existing photocatalytic systems. These findings highlight the potential of CuO/NiO/TiO2-based photocatalysts, combined with fluidized bed reactors, as an energy-efficient and scalable approach for sustainable PO production.

Abstract Image

Abstract Image

Abstract Image

设计了NiO/TiO2和CuO/NiO/TiO2异质结,利用分子氧可持续地直接光催化丙烯环氧化。
紫外- a照射下分子氧选择性光催化丙烯环氧化反应是一种很有前途的可持续的环氧丙烷生产方法。本研究通过溶胶-凝胶衍生TiO2的热退火合成了NiO/TiO2和CuO/NiO/TiO2异质结光催化剂,并在流化床光反应器中进行了测试。结构和光学表征证实了NiO在TiO2上的成功沉积,并强调了NiO含量在优化电荷分离和催化效率方面的关键作用。在NiO/TiO2系列中,NiO(1.1%)/TiO2复合材料表现出最低的光致发光强度,表明电子-空穴复合减少,而UV-Vis DRS分析显示吸收起始红移和带隙能量降低。这些特性增强了光吸收,促进了电荷转移,与低和高NiO负载相比,具有优越的光催化性能。在辐照下,NiO(1.1%)/TiO2的丙烯转化率为52.5%,对PO的选择性为83.4%,PO收率为43.8%,证实了NiO(1.1%)/TiO2促进选择性环氧化反应的有效性。引入CuO形成CuO(1.1%)/NiO(1.1%)/TiO2异质结进一步提高了催化性能,丙烯转化率为61%,PO选择性为92%,PO收率为56%。活性的提高是由于分子氧有效地转化为过氧化氢,过氧化氢作为环氧化物形成的选择性氧化剂。工艺优化表明,水蒸气(1000 ppm)显著提高了PO的选择性,而入射光强对转化率起关键作用。该系统在24小时的连续运行中表现出优异的稳定性,没有观察到失活。此外,一项能源效率分析表明,每摩尔丙烯的转化能耗极低,为0.019千瓦时,显著优于现有的光催化系统。这些发现突出了CuO/NiO/ tio2基光催化剂与流化床反应器相结合的潜力,作为一种节能且可扩展的可持续PO生产方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信