{"title":"Stimulus-dependent delay of perceptual filling-in by microsaccades.","authors":"Max Levinson, Christopher C Pack, Sylvain Baillet","doi":"10.1167/jov.25.8.8","DOIUrl":null,"url":null,"abstract":"<p><p>Perception is a function of both stimulus features and active sensory sampling. The illusion of perceptual filling-in occurs when eye gaze is kept still: visual boundary perception may fail, causing adjacent visual features to remarkably merge into one uniform visual surface. Microsaccades-small, involuntary eye movements during gaze fixation-counteract perceptual filling-in, but the mechanisms underlying this process are not well-understood. We investigated whether microsaccade efficacy for preventing filling-in depends on two boundary properties, namely, color contrast and retinal eccentricity (distance from gaze center). Twenty-one human participants (male and female) fixated on a point until they experienced filling-in between two isoluminant colored surfaces. We found that increased color contrast independently extends the duration before filling-in, but does not alter the impact of individual microsaccades. Conversely, lower eccentricity delayed filling-in only by increasing microsaccade efficacy. We propose that microsaccades facilitate stable boundary perception via a transient retinal motion signal that scales with eccentricity but is invariant to boundary contrast. These results shed light on how incessant eye movements integrate with ongoing stimulus processing to stabilize perceptual detail, with implications for visual rehabilitation and the optimization of visual presentations in virtual and augmented reality environments.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"25 8","pages":"8"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12248979/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.25.8.8","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Perception is a function of both stimulus features and active sensory sampling. The illusion of perceptual filling-in occurs when eye gaze is kept still: visual boundary perception may fail, causing adjacent visual features to remarkably merge into one uniform visual surface. Microsaccades-small, involuntary eye movements during gaze fixation-counteract perceptual filling-in, but the mechanisms underlying this process are not well-understood. We investigated whether microsaccade efficacy for preventing filling-in depends on two boundary properties, namely, color contrast and retinal eccentricity (distance from gaze center). Twenty-one human participants (male and female) fixated on a point until they experienced filling-in between two isoluminant colored surfaces. We found that increased color contrast independently extends the duration before filling-in, but does not alter the impact of individual microsaccades. Conversely, lower eccentricity delayed filling-in only by increasing microsaccade efficacy. We propose that microsaccades facilitate stable boundary perception via a transient retinal motion signal that scales with eccentricity but is invariant to boundary contrast. These results shed light on how incessant eye movements integrate with ongoing stimulus processing to stabilize perceptual detail, with implications for visual rehabilitation and the optimization of visual presentations in virtual and augmented reality environments.
期刊介绍:
Exploring all aspects of biological visual function, including spatial vision, perception,
low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.