A Bacteriophage-Derived Primase-Helicase Orchestrates Plant Organellar DNA Replication.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Carlos M Morales-Vázquez, Mayra A Dagio-Hernandez, Laura D Camacho-Manriquez, Antolin Peralta-Castro, Claudia D Raygoza, Diana Solano-Argüello, Josue D Mora-Garduño, Rogelio Gonzalez-Gonzalez, Humberto Herrera-Ubaldo, Corina Díaz-Quezada, Alfredo Cruz-Ramírez, Stefan de Folter, José Antonio Pedroza-García, Luis G Brieba
{"title":"A Bacteriophage-Derived Primase-Helicase Orchestrates Plant Organellar DNA Replication.","authors":"Carlos M Morales-Vázquez, Mayra A Dagio-Hernandez, Laura D Camacho-Manriquez, Antolin Peralta-Castro, Claudia D Raygoza, Diana Solano-Argüello, Josue D Mora-Garduño, Rogelio Gonzalez-Gonzalez, Humberto Herrera-Ubaldo, Corina Díaz-Quezada, Alfredo Cruz-Ramírez, Stefan de Folter, José Antonio Pedroza-García, Luis G Brieba","doi":"10.1111/ppl.70379","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanisms underlying the assembly and regulation of enzymatic complexes responsible for plant organellar DNA replication remain poorly characterized. Unlike the monophyletic origin of the gene products involved in animal mitochondrial replication, derived from T-odd bacteriophages, plant organellar DNA replication relies on genes either unique to plants or with origins traceable to bacteria and bacteriophages. Here, we demonstrate that the bacteriophage-related primase-helicase from Arabidopsis thaliana (AtTwinkle) is essential for double-stranded DNA unwinding. AtTwinkle functionally interacts with bacterial-related organellar DNA polymerases (AtPolIs), which lack the ability to unwind large regions of dsDNA, coupling DNA unwinding to processive DNA synthesis at the leading strand of the replisome. Analysis of two T-DNA insertion mutants of AtTwinkle reveals distinct phenotypic outcomes; these mutant lines are hereafter referred to as ph. The ph1 (-/-) mutant, which carries a T-DNA insertion in the 5´ UTR region, is viable and exhibits no noticeable developmental differences compared to wild-type plants. In contrast, the ph2 mutant, with a T-DNA insertion in the 19th exon, displays embryo lethality. Despite these differences, both ph1 (-/-) and heterozygous ph2 (+/-) mutants show a reduction in organellar DNA copy numbers under non-stress conditions and exhibit heightened sensitivity to DNA-damaging agents. In summary, our findings demonstrate that AtTwinkle is essential for organellar DNA replication. The heightened sensitivity of insertion mutants to organelle-specific genotoxic agents indicates that loss of AtTwinkle function reduces the availability of template DNA necessary for double-strand break (DSB) repair. Collectively, our findings reveal that two proteins of distinct evolutionary origins-AtTwinkle and plant organellar DNA polymerases-coevolved to coordinate DNA replication in plant organelles.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 4","pages":"e70379"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12230644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70379","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanisms underlying the assembly and regulation of enzymatic complexes responsible for plant organellar DNA replication remain poorly characterized. Unlike the monophyletic origin of the gene products involved in animal mitochondrial replication, derived from T-odd bacteriophages, plant organellar DNA replication relies on genes either unique to plants or with origins traceable to bacteria and bacteriophages. Here, we demonstrate that the bacteriophage-related primase-helicase from Arabidopsis thaliana (AtTwinkle) is essential for double-stranded DNA unwinding. AtTwinkle functionally interacts with bacterial-related organellar DNA polymerases (AtPolIs), which lack the ability to unwind large regions of dsDNA, coupling DNA unwinding to processive DNA synthesis at the leading strand of the replisome. Analysis of two T-DNA insertion mutants of AtTwinkle reveals distinct phenotypic outcomes; these mutant lines are hereafter referred to as ph. The ph1 (-/-) mutant, which carries a T-DNA insertion in the 5´ UTR region, is viable and exhibits no noticeable developmental differences compared to wild-type plants. In contrast, the ph2 mutant, with a T-DNA insertion in the 19th exon, displays embryo lethality. Despite these differences, both ph1 (-/-) and heterozygous ph2 (+/-) mutants show a reduction in organellar DNA copy numbers under non-stress conditions and exhibit heightened sensitivity to DNA-damaging agents. In summary, our findings demonstrate that AtTwinkle is essential for organellar DNA replication. The heightened sensitivity of insertion mutants to organelle-specific genotoxic agents indicates that loss of AtTwinkle function reduces the availability of template DNA necessary for double-strand break (DSB) repair. Collectively, our findings reveal that two proteins of distinct evolutionary origins-AtTwinkle and plant organellar DNA polymerases-coevolved to coordinate DNA replication in plant organelles.

噬菌体衍生的引物解旋酶协调植物细胞器DNA复制。
植物细胞器DNA复制的酶复合物的组装和调控机制仍然不清楚。与来源于T-odd噬菌体的参与动物线粒体复制的基因产物的单系起源不同,植物细胞器DNA复制依赖于植物特有的基因或可追溯到细菌和噬菌体的基因。在这里,我们证明了来自拟南芥的噬菌体相关的引物解旋酶(AtTwinkle)对双链DNA解绕是必不可少的。AtTwinkle在功能上与细菌相关的细胞器DNA聚合酶(AtPolIs)相互作用,后者缺乏解开大区域dsDNA的能力,将DNA解绕与复制体前导链上的DNA合成结合起来。AtTwinkle的两个T-DNA插入突变体的分析揭示了不同的表型结果;这些突变系以下称为ph。ph1(-/-)突变体在5´UTR区域携带T-DNA插入,是有活力的,与野生型植物相比没有明显的发育差异。相反,在第19外显子插入T-DNA的ph2突变体显示胚胎致死性。尽管存在这些差异,但在非应激条件下,ph1(-/-)和杂合ph2(+/-)突变体都表现出细胞器DNA拷贝数的减少,并对DNA损伤剂表现出更高的敏感性。总之,我们的研究结果表明AtTwinkle对细胞器DNA复制至关重要。插入突变体对细胞器特异性基因毒性物质的高度敏感性表明,AtTwinkle功能的丧失降低了双链断裂(DSB)修复所需的模板DNA的可用性。总的来说,我们的研究结果揭示了两种不同进化起源的蛋白质- attwinkle和植物细胞器DNA聚合酶-共同进化以协调植物细胞器中的DNA复制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信