Heather J Faust, Margaret H Chang, A Helena Jonsson, Erin Theisen, Nelson M LaMarche, William V Trim, Lydia Lynch, Peter A Nigrovic, Michael B Brenner
{"title":"Adipose tissue harbors pathogenic T cells in obesity that exacerbate inflammatory arthritis.","authors":"Heather J Faust, Margaret H Chang, A Helena Jonsson, Erin Theisen, Nelson M LaMarche, William V Trim, Lydia Lynch, Peter A Nigrovic, Michael B Brenner","doi":"10.1084/jem.20240677","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity worsens inflammatory arthritis severity, even in non-load-bearing joints, but the mechanism is unknown. Here, we show that there is an immunological mechanism mediated by T cells in adipose tissue. Using an antigen-induced arthritis model with trackable, arthritis-inducing CD8+ OT-I T cells, we found that OT-I T cells home to visceral adipose tissue (VAT) and expand there in the obese high-fat diet (HFD) context. Transplant of VAT from arthritic mice increased arthritis severity in naïve recipient mice and was ameliorated by CD8 T cell depletion. Bulk RNA sequencing identified pro-inflammatory changes to OT-I T cells in VAT characterized by increased IFN α and γ signaling after HFD. Intraperitoneal injection of IFNα, but not IFNγ, expanded CD8 T cell numbers in VAT. HFD-induced expansion of VAT CD8 T cells was ameliorated with global Ifnar1 deletion, and importantly, genetic deletion of Ifnar1 in T cells decreased arthritis severity in obese mice. These results provide a mechanistic explanation of how obesity worsens autoimmunity.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 9","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20240677","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity worsens inflammatory arthritis severity, even in non-load-bearing joints, but the mechanism is unknown. Here, we show that there is an immunological mechanism mediated by T cells in adipose tissue. Using an antigen-induced arthritis model with trackable, arthritis-inducing CD8+ OT-I T cells, we found that OT-I T cells home to visceral adipose tissue (VAT) and expand there in the obese high-fat diet (HFD) context. Transplant of VAT from arthritic mice increased arthritis severity in naïve recipient mice and was ameliorated by CD8 T cell depletion. Bulk RNA sequencing identified pro-inflammatory changes to OT-I T cells in VAT characterized by increased IFN α and γ signaling after HFD. Intraperitoneal injection of IFNα, but not IFNγ, expanded CD8 T cell numbers in VAT. HFD-induced expansion of VAT CD8 T cells was ameliorated with global Ifnar1 deletion, and importantly, genetic deletion of Ifnar1 in T cells decreased arthritis severity in obese mice. These results provide a mechanistic explanation of how obesity worsens autoimmunity.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.