EEG signal analysis for the classification of Alzheimer's and frontotemporal dementia: a novel approach using artificial neural networks and cross-entropy techniques.
{"title":"EEG signal analysis for the classification of Alzheimer's and frontotemporal dementia: a novel approach using artificial neural networks and cross-entropy techniques.","authors":"Fatma Latifoğlu, Fırat Orhanbulucu, Murugappan Murugappan, Sümeyye Nur Gürbüz, Burçin Çayır, Fatma Zehra Avcı","doi":"10.1080/00207454.2025.2529301","DOIUrl":null,"url":null,"abstract":"<p><p>Dementia, a neurological disorder, can cause cognitive decline due to damage to the brain. Our study aims to contribute to the development of computer-aided diagnosis (CAD) systems to aid in the early diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) by examining Electroencephalogram (EEG) signals. EEG signals of 36 AD, 23 FTD and 29 healthy control (HC) participants were analyzed and entropy measurement approaches were used to analyze the connectivity between EEG channel pairs. The cross-permutation entropy (CPE) method and the cross conditional entropy (CCE) method were analyzed separately and the fused cross entropy (FCE) method was also tested by combining these techniques to determine the most appropriate method for feature extraction from EEG signals. The features obtained from these techniques were then evaluated in the classification phase using two separate machine learning algorithms. According to the performance evaluation criteria, the FCE and artificial neural network (ANN) model showed the most successful performance in the classification of all groups. In terms of area under the curve (AUC) and accuracy rates, 99.85% AUC and 98.46% accuracy were obtained in AD&HC groups, 99.71% AUC and 98.10% accuracy in FTD&HC groups and 99.39% AUC, 96.61% accuracy in AD&FTD groups. With the same model, an AUC rate of 97.14% and accuracy rate of 73.86% was obtained for the classification of the triple group (AD&FTD&HC). It has been observed that the results of this study show successful performance compared to the results of similar studies.</p>","PeriodicalId":14161,"journal":{"name":"International Journal of Neuroscience","volume":" ","pages":"1-14"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00207454.2025.2529301","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dementia, a neurological disorder, can cause cognitive decline due to damage to the brain. Our study aims to contribute to the development of computer-aided diagnosis (CAD) systems to aid in the early diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) by examining Electroencephalogram (EEG) signals. EEG signals of 36 AD, 23 FTD and 29 healthy control (HC) participants were analyzed and entropy measurement approaches were used to analyze the connectivity between EEG channel pairs. The cross-permutation entropy (CPE) method and the cross conditional entropy (CCE) method were analyzed separately and the fused cross entropy (FCE) method was also tested by combining these techniques to determine the most appropriate method for feature extraction from EEG signals. The features obtained from these techniques were then evaluated in the classification phase using two separate machine learning algorithms. According to the performance evaluation criteria, the FCE and artificial neural network (ANN) model showed the most successful performance in the classification of all groups. In terms of area under the curve (AUC) and accuracy rates, 99.85% AUC and 98.46% accuracy were obtained in AD&HC groups, 99.71% AUC and 98.10% accuracy in FTD&HC groups and 99.39% AUC, 96.61% accuracy in AD&FTD groups. With the same model, an AUC rate of 97.14% and accuracy rate of 73.86% was obtained for the classification of the triple group (AD&FTD&HC). It has been observed that the results of this study show successful performance compared to the results of similar studies.
期刊介绍:
The International Journal of Neuroscience publishes original research articles, reviews, brief scientific reports, case studies, letters to the editor and book reviews concerned with problems of the nervous system and related clinical studies, epidemiology, neuropathology, medical and surgical treatment options and outcomes, neuropsychology and other topics related to the research and care of persons with neurologic disorders. The focus of the journal is clinical and transitional research. Topics covered include but are not limited to: ALS, ataxia, autism, brain tumors, child neurology, demyelinating diseases, epilepsy, genetics, headache, lysosomal storage disease, mitochondrial dysfunction, movement disorders, multiple sclerosis, myopathy, neurodegenerative diseases, neuromuscular disorders, neuropharmacology, neuropsychiatry, neuropsychology, pain, sleep disorders, stroke, and other areas related to the neurosciences.