Schwann cells modified to secrete MANF is a potential cellular therapy for peripheral nerve regeneration.

IF 4 Q2 CELL & TISSUE ENGINEERING
Bhadrapriya Sivakumar, Caleb Hammond, Valeria Martinez, Nickson Joseph, Johnson V John, Anil Kumar, Anand Krishnan
{"title":"Schwann cells modified to secrete MANF is a potential cellular therapy for peripheral nerve regeneration.","authors":"Bhadrapriya Sivakumar, Caleb Hammond, Valeria Martinez, Nickson Joseph, Johnson V John, Anil Kumar, Anand Krishnan","doi":"10.1186/s13619-025-00247-9","DOIUrl":null,"url":null,"abstract":"<p><p>Effective therapies for peripheral nerve repair are still lacking despite active research in this field over the past years. The limited knowledge of biomolecules that equally promote axon regeneration and glial cell dynamics, which are critical for nerve regeneration, poses a major challenge in developing effective therapies. Here, we showed that the neurotrophic factor mesencephalic astrocyte-derived neurotrophic factor (MANF) equally promotes axon regeneration and glial cell dynamics favorable for nerve regeneration. Using adult rodent models, we showed that the endogenous expression of MANF is restricted to non-peptidergic sensory neurons. However, supplementation of exogenous MANF promoted the growth of all subtypes of adult sensory neurons. We also demonstrated that exogenous MANF promotes the proliferation and migration of adult primary Schwann Cells (SCs). Furthermore, we showed that local and repeated administration of MANF to injured nerves promotes axon regeneration in mice models. Finally, we devised a therapeutic approach by programming nerve-resident SCs to locally and continuously deliver MANF to injured nerves and showed that this approach improves axon regeneration. Overall, this work developed a therapeutic approach by harnessing the power of SCs as a local delivery system for MANF for nerve repair.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"29"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234937/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-025-00247-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Effective therapies for peripheral nerve repair are still lacking despite active research in this field over the past years. The limited knowledge of biomolecules that equally promote axon regeneration and glial cell dynamics, which are critical for nerve regeneration, poses a major challenge in developing effective therapies. Here, we showed that the neurotrophic factor mesencephalic astrocyte-derived neurotrophic factor (MANF) equally promotes axon regeneration and glial cell dynamics favorable for nerve regeneration. Using adult rodent models, we showed that the endogenous expression of MANF is restricted to non-peptidergic sensory neurons. However, supplementation of exogenous MANF promoted the growth of all subtypes of adult sensory neurons. We also demonstrated that exogenous MANF promotes the proliferation and migration of adult primary Schwann Cells (SCs). Furthermore, we showed that local and repeated administration of MANF to injured nerves promotes axon regeneration in mice models. Finally, we devised a therapeutic approach by programming nerve-resident SCs to locally and continuously deliver MANF to injured nerves and showed that this approach improves axon regeneration. Overall, this work developed a therapeutic approach by harnessing the power of SCs as a local delivery system for MANF for nerve repair.

雪旺细胞修饰分泌MANF是一种潜在的周围神经再生细胞疗法。
尽管近年来在这一领域进行了积极的研究,但仍然缺乏有效的修复周围神经的方法。对神经再生至关重要的促进轴突再生和神经胶质细胞动力学的生物分子的了解有限,这对开发有效的治疗方法提出了重大挑战。在这里,我们发现神经营养因子中脑星形细胞来源的神经营养因子(MANF)同样促进轴突再生和有利于神经再生的胶质细胞动力学。使用成年啮齿动物模型,我们发现内源性MANF的表达仅限于非肽能感觉神经元。然而,外源性MANF的补充促进了所有亚型成人感觉神经元的生长。我们还证明了外源性MANF促进成年原代雪旺细胞(SCs)的增殖和迁移。此外,我们发现局部和重复给药MANF损伤神经促进轴突再生小鼠模型。最后,我们设计了一种治疗方法,通过编程神经驻留SCs,使其局部持续地向受损神经输送MANF,并表明这种方法可以改善轴突再生。总的来说,这项工作开发了一种治疗方法,利用SCs作为神经修复的局部输送系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Regeneration
Cell Regeneration Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics: ◎ Embryonic stem cells ◎ Induced pluripotent stem cells ◎ Tissue-specific stem cells ◎ Tissue or organ regeneration ◎ Methodology ◎ Biomaterials and regeneration ◎ Clinical translation or application in medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信