Regularity for the Boltzmann Equation Conditional to Pressure and Moment Bounds

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Xavier Fernández-Real, Xavier Ros-Oton, Marvin Weidner
{"title":"Regularity for the Boltzmann Equation Conditional to Pressure and Moment Bounds","authors":"Xavier Fernández-Real,&nbsp;Xavier Ros-Oton,&nbsp;Marvin Weidner","doi":"10.1007/s00220-025-05356-9","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that solutions to the Boltzmann equation without cut-off satisfying pointwise bounds on some observables (mass, pressure, and suitable moments) enjoy a uniform bound in <span>\\(L^\\infty \\)</span> in the case of hard potentials. As a consequence, we derive <span>\\(C^{\\infty }\\)</span> estimates and decay estimates for all derivatives, conditional to these macroscopic bounds. Our <span>\\(L^\\infty \\)</span> estimates are uniform in the limit <span>\\(s \\nearrow 1\\)</span> and hence we recover the same results also for the Landau equation.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222422/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05356-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that solutions to the Boltzmann equation without cut-off satisfying pointwise bounds on some observables (mass, pressure, and suitable moments) enjoy a uniform bound in \(L^\infty \) in the case of hard potentials. As a consequence, we derive \(C^{\infty }\) estimates and decay estimates for all derivatives, conditional to these macroscopic bounds. Our \(L^\infty \) estimates are uniform in the limit \(s \nearrow 1\) and hence we recover the same results also for the Landau equation.

玻尔兹曼方程受压力和矩限约束的正则性。
我们证明了在硬势的情况下,无截断的玻尔兹曼方程的解在某些观测值(质量、压力和合适矩)上满足点界时在L∞上具有一致界。因此,我们导出了所有导数的C∞估计和衰减估计,条件是这些宏观边界。我们的L∞估计在极限s × 1下是一致的,因此我们对朗道方程也恢复了相同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信