Programmable Biporphyrin-G-Quadruplex Nanoflowers for Simultaneous Tumor Cell Recognition and Enhanced Photodynamic Therapy.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Bo Chen, Lan Mei, Yinggang Wang, Hui Li, Chenqian Feng, Min Mu, Rangrang Fan, Bingwen Zou, Gang Guo
{"title":"Programmable Biporphyrin-G-Quadruplex Nanoflowers for Simultaneous Tumor Cell Recognition and Enhanced Photodynamic Therapy.","authors":"Bo Chen, Lan Mei, Yinggang Wang, Hui Li, Chenqian Feng, Min Mu, Rangrang Fan, Bingwen Zou, Gang Guo","doi":"10.1002/smtd.202401993","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygen-based photodynamic therapy (PDT) is often hindered by the hypoxic conditions within the tumor microenvironment (TME). To overcome this challenge, multifunctional DNA nanoflowers is designed using rolling circle amplification (RCA), incorporating porphyrin and G-quadruplex (G4) DNA to achieve both tumor cell recognition and enhanced PDT performance. The spatial arrangement of AS1411 aptamers and G4 motifs within the DNA nanoflowers increases the binding specificity to cancer cells, thereby facilitating targeted detection. Furthermore, the incorporation of hemin into the G4 complex endows the nanoflowers with peroxidase-like catalytic activity, enabling colorimetric detection of tumor cells through endogenous hydrogen peroxide production. This catalytic process generates oxygen to alleviate hypoxia within the TME and amplifies the production of reactive oxygen species (ROS), thereby enhancing PDT effectiveness. Additionally, the multifunctional DNA nanoflowers induce both ferroptosis and apoptosis in cancer cells, effectively inhibiting the progression of triple-negative breast cancer. In summary, these multifunctional DNA nanoflowers offer a promising and highly selective approach to enhancing cancer treatment outcomes.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401993"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401993","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen-based photodynamic therapy (PDT) is often hindered by the hypoxic conditions within the tumor microenvironment (TME). To overcome this challenge, multifunctional DNA nanoflowers is designed using rolling circle amplification (RCA), incorporating porphyrin and G-quadruplex (G4) DNA to achieve both tumor cell recognition and enhanced PDT performance. The spatial arrangement of AS1411 aptamers and G4 motifs within the DNA nanoflowers increases the binding specificity to cancer cells, thereby facilitating targeted detection. Furthermore, the incorporation of hemin into the G4 complex endows the nanoflowers with peroxidase-like catalytic activity, enabling colorimetric detection of tumor cells through endogenous hydrogen peroxide production. This catalytic process generates oxygen to alleviate hypoxia within the TME and amplifies the production of reactive oxygen species (ROS), thereby enhancing PDT effectiveness. Additionally, the multifunctional DNA nanoflowers induce both ferroptosis and apoptosis in cancer cells, effectively inhibiting the progression of triple-negative breast cancer. In summary, these multifunctional DNA nanoflowers offer a promising and highly selective approach to enhancing cancer treatment outcomes.

同时用于肿瘤细胞识别和增强光动力治疗的可编程双卟啉- g四重纳米花。
氧基光动力治疗(PDT)经常受到肿瘤微环境(TME)内缺氧条件的阻碍。为了克服这一挑战,利用滚动环扩增(RCA)设计了多功能DNA纳米花,结合卟啉和g -四重体(G4) DNA,以实现肿瘤细胞识别和增强PDT性能。DNA纳米花内AS1411适配体和G4基序的空间排列增加了与癌细胞的结合特异性,从而便于靶向检测。此外,血红素与G4复合物的结合使纳米花具有过氧化物酶样的催化活性,使其能够通过内源性过氧化氢的产生对肿瘤细胞进行比色检测。这一催化过程产生氧气以缓解TME内的缺氧,并放大活性氧(ROS)的产生,从而提高PDT的有效性。此外,多功能DNA纳米花诱导癌细胞铁下垂和细胞凋亡,有效抑制三阴性乳腺癌的进展。总之,这些多功能DNA纳米花为提高癌症治疗效果提供了一种有前途的高选择性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信