May A Beydoun, Nicole Noren Hooten, Nigus G Asefa, Michael F Georgescu, Minkyo Song, Hind A Beydoun, Sri Banerjee, Jagdish Khubchandani, Osorio Meirelles, Lenore J Launer, Michele K Evans, Alan B Zonderman
{"title":"Telomere Length, Epigenetic Age Acceleration, and Mortality Risk in US Adult Populations: An Additive Bayesian Network Analysis.","authors":"May A Beydoun, Nicole Noren Hooten, Nigus G Asefa, Michael F Georgescu, Minkyo Song, Hind A Beydoun, Sri Banerjee, Jagdish Khubchandani, Osorio Meirelles, Lenore J Launer, Michele K Evans, Alan B Zonderman","doi":"10.1111/acel.70159","DOIUrl":null,"url":null,"abstract":"<p><p>Telomere length and DNA methylation (DNAm) clocks serve as markers of biological aging and have been linked to mortality risk. This study applies additive Bayesian networks (ABNs) to examine associations between DNAm clocks, telomere length, and mortality, with a focus on racial and sex differences in aging. Data from three US cohorts-NHANES (n = 2522), HRS (n = 1029), and HANDLS (n = 92-470)-were analyzed using correlation matrices, Cox models, ABNs, and generalized structural equation models (GSEM) with mortality from the National Death Index. Epigenetic clocks, particularly GrimAgeEAA, HannumAgeEAA, and DunedinPoAM (or DunedinPACE), were stronger mortality predictors than telomere length. ABNs highlighted key relationships, consistently linking age and GrimAgeEAA to mortality in NHANES and HRS. GSEM models derived from ABNs indicated an inverse association between female sex and GrimAgeEAA in NHANES (β = -0.500) and HRS (β = -0.563), suggesting slower biological aging in women, although GrimAge clock incorporates sex in its definition. GrimAgeEAA strongly predicted mortality (LnHR, β ± SE of +0.476 ± 0.0393 in NHANES and +0.511 ± 0.0775 in HRS). Non-Hispanic Black adults exhibited accelerated aging via DunedinPoAM, partially mediating their higher mortality risk. Hispanic adults in NHANES had unique associations with PhenoAgeEAA (β = +0.197), a mortality predictor. DNAm clocks, particularly GrimAgeEAA, outperform telomere length in predicting mortality. Second-generation epigenetic aging markers offer insights into demographic disparities in aging and mortality, with ABNs revealing complex interrelations among aging biomarkers, sex, race, and mortality risk.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70159"},"PeriodicalIF":7.1000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70159","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Telomere length and DNA methylation (DNAm) clocks serve as markers of biological aging and have been linked to mortality risk. This study applies additive Bayesian networks (ABNs) to examine associations between DNAm clocks, telomere length, and mortality, with a focus on racial and sex differences in aging. Data from three US cohorts-NHANES (n = 2522), HRS (n = 1029), and HANDLS (n = 92-470)-were analyzed using correlation matrices, Cox models, ABNs, and generalized structural equation models (GSEM) with mortality from the National Death Index. Epigenetic clocks, particularly GrimAgeEAA, HannumAgeEAA, and DunedinPoAM (or DunedinPACE), were stronger mortality predictors than telomere length. ABNs highlighted key relationships, consistently linking age and GrimAgeEAA to mortality in NHANES and HRS. GSEM models derived from ABNs indicated an inverse association between female sex and GrimAgeEAA in NHANES (β = -0.500) and HRS (β = -0.563), suggesting slower biological aging in women, although GrimAge clock incorporates sex in its definition. GrimAgeEAA strongly predicted mortality (LnHR, β ± SE of +0.476 ± 0.0393 in NHANES and +0.511 ± 0.0775 in HRS). Non-Hispanic Black adults exhibited accelerated aging via DunedinPoAM, partially mediating their higher mortality risk. Hispanic adults in NHANES had unique associations with PhenoAgeEAA (β = +0.197), a mortality predictor. DNAm clocks, particularly GrimAgeEAA, outperform telomere length in predicting mortality. Second-generation epigenetic aging markers offer insights into demographic disparities in aging and mortality, with ABNs revealing complex interrelations among aging biomarkers, sex, race, and mortality risk.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.