Human iPSCs Derived MSCs-Secreted Exosomes Modulate Senescent Nucleus Pulposus Cells Induced Macrophage Polarization via Metabolic Reprogramming to Mitigate Intervertebral Disc Degeneration.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qian Xiang, Jiawen Zhan, Shuo Tian, Yongzhao Zhao, Zhenquan Wu, Jialiang Lin, Longting Chen, Longjie Wang, Shuai Jiang, Zhuoran Sun, Weishi Li
{"title":"Human iPSCs Derived MSCs-Secreted Exosomes Modulate Senescent Nucleus Pulposus Cells Induced Macrophage Polarization via Metabolic Reprogramming to Mitigate Intervertebral Disc Degeneration.","authors":"Qian Xiang, Jiawen Zhan, Shuo Tian, Yongzhao Zhao, Zhenquan Wu, Jialiang Lin, Longting Chen, Longjie Wang, Shuai Jiang, Zhuoran Sun, Weishi Li","doi":"10.1002/advs.202504347","DOIUrl":null,"url":null,"abstract":"<p><p>Intervertebral disc degeneration (IDD) is a leading cause of discogenic lower back pain, yet the crosstalk between macrophage polarization and nucleus pulposus (NP) cell senescence in IDD progression remains poorly understood. Emerging therapies using human induced pluripotent stem cell (iPSCs)-derived mesenchymal stem cells (iMSCs) show promise for IDD treatment. In this study, it is first demonstrated that senescent NP cells promote macrophage polarization toward the pro-inflammatory M1 phenotype in coculture systems. Reciprocally, conditioned medium from M1 macrophages exposed to senescent NP cells accelerates senescence in healthy NP cells. Notably, it is identified that iMSCs-derived exosomes break this pathogenic cycle by reprogramming M1 macrophages toward anti-inflammatory M2 phenotypes. Mechanistically, these exosomes deliver miR-100-5p to suppress mTORC1 signaling and regulate glycolysis metabolic reprogramming in macrophages. These findings are corroborated in a rat IDD model, where iMSC-exosomes mitigate IDD progression in vivo. This work elucidates a novel iMSC-exosomes mediated mechanism regulating macrophage-NP cell interactions, which provides a promising therapeutic strategy for IDD intervention.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e04347"},"PeriodicalIF":14.1000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202504347","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Intervertebral disc degeneration (IDD) is a leading cause of discogenic lower back pain, yet the crosstalk between macrophage polarization and nucleus pulposus (NP) cell senescence in IDD progression remains poorly understood. Emerging therapies using human induced pluripotent stem cell (iPSCs)-derived mesenchymal stem cells (iMSCs) show promise for IDD treatment. In this study, it is first demonstrated that senescent NP cells promote macrophage polarization toward the pro-inflammatory M1 phenotype in coculture systems. Reciprocally, conditioned medium from M1 macrophages exposed to senescent NP cells accelerates senescence in healthy NP cells. Notably, it is identified that iMSCs-derived exosomes break this pathogenic cycle by reprogramming M1 macrophages toward anti-inflammatory M2 phenotypes. Mechanistically, these exosomes deliver miR-100-5p to suppress mTORC1 signaling and regulate glycolysis metabolic reprogramming in macrophages. These findings are corroborated in a rat IDD model, where iMSC-exosomes mitigate IDD progression in vivo. This work elucidates a novel iMSC-exosomes mediated mechanism regulating macrophage-NP cell interactions, which provides a promising therapeutic strategy for IDD intervention.

人多能干细胞衍生的间充质干细胞分泌外泌体通过代谢重编程调节衰老髓核细胞诱导的巨噬细胞极化,减轻椎间盘退变。
椎间盘退变(IDD)是椎间盘源性下背部疼痛的主要原因,然而巨噬细胞极化和髓核(NP)细胞衰老在IDD进展中的相互作用尚不清楚。使用人类诱导多能干细胞(iPSCs)衍生的间充质干细胞(iMSCs)的新兴疗法显示出治疗IDD的希望。在这项研究中,首次证明了衰老的NP细胞在共培养系统中促进巨噬细胞向促炎M1表型极化。反过来,暴露于衰老NP细胞的M1巨噬细胞的条件培养基加速了健康NP细胞的衰老。值得注意的是,研究发现imscs衍生的外泌体通过将M1巨噬细胞重编程为抗炎M2表型来打破这种致病循环。在机制上,这些外泌体递送miR-100-5p抑制mTORC1信号传导并调节巨噬细胞中的糖酵解代谢重编程。这些发现在大鼠IDD模型中得到了证实,其中imsc外泌体在体内减轻了IDD的进展。这项工作阐明了一种新的imsc -外泌体介导的调节巨噬细胞- np细胞相互作用的机制,为IDD干预提供了一种有希望的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信