A Simple, Polarizable, Rigid, 3-Point Water Model Using the Direct Polarization Approximation.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2025-07-22 Epub Date: 2025-07-07 DOI:10.1021/acs.jctc.5c00603
Liangyue W Drew, Michael K Gilson
{"title":"A Simple, Polarizable, Rigid, 3-Point Water Model Using the Direct Polarization Approximation.","authors":"Liangyue W Drew, Michael K Gilson","doi":"10.1021/acs.jctc.5c00603","DOIUrl":null,"url":null,"abstract":"<p><p>We present dPol, a 3-point, rigid, polarizable water model that uses the direct approximation of polarization. We show that, with a moderate computational cost (∼3× slower than TIP3P), dPol achieves additional accuracy over widely used nonpolarizable 3-point rigid water models. Unlike most polarizable force fields, dPol allows the use of a 2 fs time-step with a conventional molecular dynamics integrator. The partial charges and polarizabilities used in dPol are derived from quantum chemistry calculations, while the Lennard-Jones parameters and geometry are adjusted to reproduce liquid properties under ambient conditions. The final dPol water model reproduces key room-temperature physical properties used in training, with a heat of vaporization of 10.43 kcal/mol, a dielectric constant of 80.7, a high-frequency dielectric constant of 1.60, a molecular polarizability of 1.41 Å<sup>3</sup>, a gas-phase dipole moment of 1.89 D, and a mean liquid-phase dipole moment of 2.55 D. Importantly, dPol also closely reproduces properties outside the training set, including the oxygen-oxygen radial distribution function of liquid water, as well as the self-diffusion coefficient (2.3×10<sup>-5</sup> cm<sup>2</sup> s<sup>-1</sup>) and shear viscosity (0.87 mPa s). Predicted temperature-dependent properties are also largely reproduced; although dPol does not correctly place the density maximum, this is not expected to impede successful application of the model to biomolecular systems near room temperature. The dPol water model is, by design, compatible with our AM1-BCC-dPol polarizable electrostatic model for small organic molecules [J. Chem. Theory Comput., 2024, 20, 1293-1305]. These models in combination establish a foundation for the integration of electronic polarizability into efficient force fields for heterogeneous systems of biological and pharmaceutical interest.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"6964-6978"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00603","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present dPol, a 3-point, rigid, polarizable water model that uses the direct approximation of polarization. We show that, with a moderate computational cost (∼3× slower than TIP3P), dPol achieves additional accuracy over widely used nonpolarizable 3-point rigid water models. Unlike most polarizable force fields, dPol allows the use of a 2 fs time-step with a conventional molecular dynamics integrator. The partial charges and polarizabilities used in dPol are derived from quantum chemistry calculations, while the Lennard-Jones parameters and geometry are adjusted to reproduce liquid properties under ambient conditions. The final dPol water model reproduces key room-temperature physical properties used in training, with a heat of vaporization of 10.43 kcal/mol, a dielectric constant of 80.7, a high-frequency dielectric constant of 1.60, a molecular polarizability of 1.41 Å3, a gas-phase dipole moment of 1.89 D, and a mean liquid-phase dipole moment of 2.55 D. Importantly, dPol also closely reproduces properties outside the training set, including the oxygen-oxygen radial distribution function of liquid water, as well as the self-diffusion coefficient (2.3×10-5 cm2 s-1) and shear viscosity (0.87 mPa s). Predicted temperature-dependent properties are also largely reproduced; although dPol does not correctly place the density maximum, this is not expected to impede successful application of the model to biomolecular systems near room temperature. The dPol water model is, by design, compatible with our AM1-BCC-dPol polarizable electrostatic model for small organic molecules [J. Chem. Theory Comput., 2024, 20, 1293-1305]. These models in combination establish a foundation for the integration of electronic polarizability into efficient force fields for heterogeneous systems of biological and pharmaceutical interest.

使用直接极化近似的简单、可极化、刚性三点水模型。
我们提出了dPol,一个3点,刚性,极化水模型,使用直接近似极化。我们表明,在计算成本适中(比TIP3P慢3倍)的情况下,dPol比广泛使用的非极化3点刚性水模型实现了额外的精度。与大多数极化力场不同,dPol允许使用2秒的时间步长与传统的分子动力学积分器。dPol中使用的部分电荷和极化率是由量子化学计算得出的,而Lennard-Jones参数和几何形状是通过调整来重现环境条件下的液体性质的。最终的dPol水模型再现了训练中使用的关键室温物理性质,汽化热为10.43 kcal/mol,介电常数为80.7,高频介电常数为1.60,分子极化率为1.41 Å3,气相偶极矩为1.89 D,平均液相偶极矩为2.55 D。重要的是,dPol还密切再现了训练集之外的性质,包括液态水的氧氧径向分布函数。自扩散系数(2.3×10-5 cm2 s-1)和剪切粘度(0.87 mPa s)。预测的温度相关特性也在很大程度上得到了再现;虽然dPol没有正确地放置密度最大值,但预计这不会妨碍该模型在室温附近的生物分子系统中的成功应用。通过设计,dPol水模型与我们的AM1-BCC-dPol极化静电模型兼容。化学。理论第一版。[j].岩石力学与工程学报,2014,20,1293-1305。这些模型结合在一起,为将电子极化性整合到生物和制药异构系统的有效力场中奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信