Research Progress on Atmospheric Turbulence Perception and Correction Based on Adaptive Optics and Deep Learning

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qinghui Liu, Yihang Di, Mengmeng Zhang, Zhenbo Ren, Jianglei Di, Jianlin Zhao
{"title":"Research Progress on Atmospheric Turbulence Perception and Correction Based on Adaptive Optics and Deep Learning","authors":"Qinghui Liu,&nbsp;Yihang Di,&nbsp;Mengmeng Zhang,&nbsp;Zhenbo Ren,&nbsp;Jianglei Di,&nbsp;Jianlin Zhao","doi":"10.1002/adpr.202400204","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric turbulence constitutes a fundamental limiting factor in astronomical observation systems and laser communication architectures. During atmospheric propagation of optical beams, dynamically evolving wavefront aberrations are inevitably induced, rendering precise turbulence characterization and mitigation critical for optimizing operational performance of terrestrial telescopes and satellite-ground optical links. Adaptive optics (AO) represents a sophisticated methodology for optical enhancement through real-time wavefront measurement and adaptive compensation of medium-induced phase distortions. Recent years have witnessed substantial advancements in AO technology, driven by synergistic progress in fundamental theories, optoelectronic devices, and computational algorithms. Furthermore, artificial intelligence-driven turbulence processing frameworks leveraging deep neural networks have emerged as a prominent research frontier, demonstrating remarkable potential in intelligent wavefront sensing and nonlinear compensation. This work presents a systematic review of atmospheric turbulence fundamentals, including theoretical formulations and AO-based mitigation strategies. Particular emphasis is placed on deep learning-enabled intelligent correction paradigms, while critical analysis is provided regarding prospective research trajectories and implementation challenges.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400204","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202400204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric turbulence constitutes a fundamental limiting factor in astronomical observation systems and laser communication architectures. During atmospheric propagation of optical beams, dynamically evolving wavefront aberrations are inevitably induced, rendering precise turbulence characterization and mitigation critical for optimizing operational performance of terrestrial telescopes and satellite-ground optical links. Adaptive optics (AO) represents a sophisticated methodology for optical enhancement through real-time wavefront measurement and adaptive compensation of medium-induced phase distortions. Recent years have witnessed substantial advancements in AO technology, driven by synergistic progress in fundamental theories, optoelectronic devices, and computational algorithms. Furthermore, artificial intelligence-driven turbulence processing frameworks leveraging deep neural networks have emerged as a prominent research frontier, demonstrating remarkable potential in intelligent wavefront sensing and nonlinear compensation. This work presents a systematic review of atmospheric turbulence fundamentals, including theoretical formulations and AO-based mitigation strategies. Particular emphasis is placed on deep learning-enabled intelligent correction paradigms, while critical analysis is provided regarding prospective research trajectories and implementation challenges.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

基于自适应光学和深度学习的大气湍流感知与校正研究进展
大气湍流是天文观测系统和激光通信体系结构的基本限制因素。在光束的大气传播过程中,不可避免地会引起动态演变的波前像差,因此精确的湍流表征和缓解对于优化地面望远镜和卫星地面光学链路的运行性能至关重要。自适应光学(AO)是一种复杂的光学增强方法,通过实时波前测量和自适应补偿介质引起的相位畸变。近年来,在基础理论、光电器件和计算算法协同进步的推动下,AO技术取得了长足的进步。此外,利用深度神经网络的人工智能驱动的湍流处理框架已经成为一个突出的研究前沿,在智能波前传感和非线性补偿方面显示出巨大的潜力。本研究系统地回顾了大气湍流的基本原理,包括理论公式和基于ao的缓解策略。特别强调的是基于深度学习的智能校正范式,同时提供了对未来研究轨迹和实施挑战的批判性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信