New Trick for the Old COP: Cellular Physiology of COPII Condensation in Lipoprotein Secretion

IF 4.5 2区 生物学 Q2 CELL BIOLOGY
Xiao Wang, Ke Yang, Xiao-Wei Chen
{"title":"New Trick for the Old COP: Cellular Physiology of COPII Condensation in Lipoprotein Secretion","authors":"Xiao Wang,&nbsp;Ke Yang,&nbsp;Xiao-Wei Chen","doi":"10.1002/jcp.70061","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Products encoded by approximately 30% of the mammalian genome exit the endoplasmic reticulum via the coat complex II (COPII) system en route to their functional destination. Among these cargoes, APOB-containing lipoproteins stand out as abundant and bulky secretory particles with profound implications for human health and diseases. Recent insights into the specialized intracellular itinerary of lipoprotein metabolism and transport not only shed light on longstanding questions of lipid dynamics, but also highlight challenges faced by the COPII machinery in accommodating these complex, unconventional cargoes. Emerging evidence supports that tightly-regulated COPII condensation enables maximal capacity of cargo transport, providing a potential solution tailored for efficient lipoprotein delivery without affecting general protein secretion. This distinction suggests that targeting COPII condensation may provide new therapeutic strategies for lipid-associated diseases. Indeed, recent studies have identified manganese as a key modulator of this process, offering novel insights into its physiological relevance and potential translations.</p></div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 7","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70061","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Products encoded by approximately 30% of the mammalian genome exit the endoplasmic reticulum via the coat complex II (COPII) system en route to their functional destination. Among these cargoes, APOB-containing lipoproteins stand out as abundant and bulky secretory particles with profound implications for human health and diseases. Recent insights into the specialized intracellular itinerary of lipoprotein metabolism and transport not only shed light on longstanding questions of lipid dynamics, but also highlight challenges faced by the COPII machinery in accommodating these complex, unconventional cargoes. Emerging evidence supports that tightly-regulated COPII condensation enables maximal capacity of cargo transport, providing a potential solution tailored for efficient lipoprotein delivery without affecting general protein secretion. This distinction suggests that targeting COPII condensation may provide new therapeutic strategies for lipid-associated diseases. Indeed, recent studies have identified manganese as a key modulator of this process, offering novel insights into its physiological relevance and potential translations.

旧COP的新把戏:脂蛋白分泌中COPII缩聚的细胞生理学
大约30%的哺乳动物基因组编码的产物通过外壳复合体II (COPII)系统在到达其功能目的地的途中退出内质网。在这些货物中,含apob的脂蛋白作为丰富而庞大的分泌颗粒而突出,对人类健康和疾病具有深远的影响。最近对脂蛋白代谢和运输的细胞内特殊行程的研究不仅揭示了长期存在的脂质动力学问题,而且还强调了COPII机制在适应这些复杂的非常规货物时所面临的挑战。新出现的证据支持,严格调节的COPII冷凝使货物运输能力最大化,提供了一种潜在的解决方案,可在不影响一般蛋白质分泌的情况下有效递送脂蛋白。这一区别表明,靶向COPII缩合可能为脂质相关疾病提供新的治疗策略。事实上,最近的研究已经确定锰是这一过程的关键调节剂,为其生理相关性和潜在的翻译提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
256
审稿时长
1 months
期刊介绍: The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信