Tharaka MDS Weeraddana, Keisuke Minehisa, Stephen A. Church, Charles Smith, Fumitaro Ishikawa, Patrick Parkinson
{"title":"High-Throughput Single-Nanowire Optoelectronic Characterization Using Microfluidic Technology","authors":"Tharaka MDS Weeraddana, Keisuke Minehisa, Stephen A. Church, Charles Smith, Fumitaro Ishikawa, Patrick Parkinson","doi":"10.1002/adpr.202500050","DOIUrl":null,"url":null,"abstract":"<p>Technologies relying on single optoelectronic nanoparticles require characterization of individual particle performance, often demanding destructive dispersal of particles from solution. A microfluidic chip with an ultrathin channel (8 μm) provides a platform for the sequential high-speed single-particle characterization of functional nanomaterials using correlative spectroscopy and imaging. This platform is shown to allow study of semiconductor nanowires with measurement rates of up to 240 nanowires/minute in continuous operation, enabling a dramatically improved and statistically robust comparison of intrawire disorder with interwire homogeneity. An analysis of over 15 k GaAs/AlGaAs nanowires reveals that ensemble measurements overestimate the full-width at half-maximum of emission by more than 4× and statistical dispersion of electronic disorder by 28%, demonstrating the importance of single-particle studies.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500050","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202500050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Technologies relying on single optoelectronic nanoparticles require characterization of individual particle performance, often demanding destructive dispersal of particles from solution. A microfluidic chip with an ultrathin channel (8 μm) provides a platform for the sequential high-speed single-particle characterization of functional nanomaterials using correlative spectroscopy and imaging. This platform is shown to allow study of semiconductor nanowires with measurement rates of up to 240 nanowires/minute in continuous operation, enabling a dramatically improved and statistically robust comparison of intrawire disorder with interwire homogeneity. An analysis of over 15 k GaAs/AlGaAs nanowires reveals that ensemble measurements overestimate the full-width at half-maximum of emission by more than 4× and statistical dispersion of electronic disorder by 28%, demonstrating the importance of single-particle studies.