Ed Deshmukh-Reeves, Matthew Shaw, Charlotte Bilsby, Campbell W. Gourlay
{"title":"Biofilm Formation on Endotracheal and Tracheostomy Tubing: A Systematic Review and Meta-Analysis of Culture Data and Sampling Method","authors":"Ed Deshmukh-Reeves, Matthew Shaw, Charlotte Bilsby, Campbell W. Gourlay","doi":"10.1002/mbo3.70032","DOIUrl":null,"url":null,"abstract":"<p>Biofilm formation on tracheal tubing is a key risk factor for ventilator-associated pneumonia. Endotracheal tube microbiology has been systematically reviewed, but tracheostomy tube profiles have not. Analysis of the tube-associated microbiome is not standardised, and sampling methods are varied. We compared the reported microbiomes of endotracheal and tracheostomy tubes and examined the impact of sampling by tracheal aspiration or direct culture. We searched PubMed, SCOPUS, and Web of Knowledge for clinical microbiology studies from 2000–2024, extracting tubing type, sampling method, and the most prevalent genera identified. Genera were compared by Spearman's rank correlation and pairwise analyses by Šidák's test. Extraction from 49 studies identified 30 genera. <i>Pseudomonas</i> was the most prevalent in all conditions followed by <i>Klebsiella, Staphylococcus</i>, and <i>Acinetobacter</i>. 25 studies performed tracheal aspiration, and 22, direct culture. Two studies used both methods. Correlation was observed between endotracheal and tracheostomy tubes, and aspirates and direct cultures (Spearman's rho = 0.69; 0.59). <i>Pseudomonas</i> were more prevalent in tracheostomy tubes (<i>p</i> < 0.0001). Coagulase-positive <i>Staphylococci</i> were more common in tracheal aspirates, and coagulase-negative <i>Staphylococci</i> in direct culture. The microbial profiles of endotracheal and tracheostomy tubes are comparable, with <i>Pseudomonas</i> being the most common coloniser. Our analyses suggest that tracheal aspiration can effectively identify the constituents of biofilms without requiring tube removal, making it a valuable tool for clinical researchers to analyse or monitor biofilms before extubation or device failure using existing microbiology procedures.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"14 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.70032","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.70032","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biofilm formation on tracheal tubing is a key risk factor for ventilator-associated pneumonia. Endotracheal tube microbiology has been systematically reviewed, but tracheostomy tube profiles have not. Analysis of the tube-associated microbiome is not standardised, and sampling methods are varied. We compared the reported microbiomes of endotracheal and tracheostomy tubes and examined the impact of sampling by tracheal aspiration or direct culture. We searched PubMed, SCOPUS, and Web of Knowledge for clinical microbiology studies from 2000–2024, extracting tubing type, sampling method, and the most prevalent genera identified. Genera were compared by Spearman's rank correlation and pairwise analyses by Šidák's test. Extraction from 49 studies identified 30 genera. Pseudomonas was the most prevalent in all conditions followed by Klebsiella, Staphylococcus, and Acinetobacter. 25 studies performed tracheal aspiration, and 22, direct culture. Two studies used both methods. Correlation was observed between endotracheal and tracheostomy tubes, and aspirates and direct cultures (Spearman's rho = 0.69; 0.59). Pseudomonas were more prevalent in tracheostomy tubes (p < 0.0001). Coagulase-positive Staphylococci were more common in tracheal aspirates, and coagulase-negative Staphylococci in direct culture. The microbial profiles of endotracheal and tracheostomy tubes are comparable, with Pseudomonas being the most common coloniser. Our analyses suggest that tracheal aspiration can effectively identify the constituents of biofilms without requiring tube removal, making it a valuable tool for clinical researchers to analyse or monitor biofilms before extubation or device failure using existing microbiology procedures.
期刊介绍:
MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era.
The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes.
MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to:
- agriculture
- antimicrobial resistance
- astrobiology
- biochemistry
- biotechnology
- cell and molecular biology
- clinical microbiology
- computational, systems, and synthetic microbiology
- environmental science
- evolutionary biology, ecology, and systematics
- food science and technology
- genetics and genomics
- geobiology and earth science
- host-microbe interactions
- infectious diseases
- natural products discovery
- pharmaceutical and medicinal chemistry
- physiology
- plant pathology
- veterinary microbiology
We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses.
The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations.
MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.