Lingling Jiao, Huilin Dong, Changjian Wu, Jing Liu, Chenhui Wang, Yi Cao, Fan Cao, Ying Zhu, Huaiyuan Zhu
{"title":"Ultrafast and Deep Saliva Proteome Reveals the Dynamic of Human Saliva With Aging by Orbitrap Astral Mass Spectrometer","authors":"Lingling Jiao, Huilin Dong, Changjian Wu, Jing Liu, Chenhui Wang, Yi Cao, Fan Cao, Ying Zhu, Huaiyuan Zhu","doi":"10.1049/nbt2/6616433","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Saliva has already proven to be a prospective diagnostic bioresource for both early disease detection and timely intervention due to its easy accessibility, noninvasiveness, and reproducibility. However, the in-depth identification of salivary proteins needs to be further improved. Until now, only 3427 proteins are included in the human salivary proteome (HSP), which is far from the millions of proteins that make up humans. Here, we set out to quantitatively map the HSP in rapid and in-depth Orbitrap Astral mass spectrometer (MS) and coronal nanomagnetic bead–based proteomics workflow. Our study reported 5937 salivary proteins, which was about 73% more than that recorded in HSP. Moreover, we compared the differences between the young and aged salivary proteins. The predominant functions of the upregulated proteins in the young were related to motor proteins and cardiomyopathy, whereas those of the aged were primarily upregulated with oxidation reaction, as well as neurodegenerative disorders. It is the first study to carry out salivary proteomics using a fast and deep Orbitrap Astral MS and remarkably enlarged the number of proteins with HSP, furthermore, salivary proteomics was found to be characterized in the young and aged. With the rapidly advancing MS and proteomics technologies, we believe that salivary protein biomarkers will be more promising for clinical diagnosis and prognosis of human diseases in the future.</p>\n </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2025 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2/6616433","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2/6616433","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Saliva has already proven to be a prospective diagnostic bioresource for both early disease detection and timely intervention due to its easy accessibility, noninvasiveness, and reproducibility. However, the in-depth identification of salivary proteins needs to be further improved. Until now, only 3427 proteins are included in the human salivary proteome (HSP), which is far from the millions of proteins that make up humans. Here, we set out to quantitatively map the HSP in rapid and in-depth Orbitrap Astral mass spectrometer (MS) and coronal nanomagnetic bead–based proteomics workflow. Our study reported 5937 salivary proteins, which was about 73% more than that recorded in HSP. Moreover, we compared the differences between the young and aged salivary proteins. The predominant functions of the upregulated proteins in the young were related to motor proteins and cardiomyopathy, whereas those of the aged were primarily upregulated with oxidation reaction, as well as neurodegenerative disorders. It is the first study to carry out salivary proteomics using a fast and deep Orbitrap Astral MS and remarkably enlarged the number of proteins with HSP, furthermore, salivary proteomics was found to be characterized in the young and aged. With the rapidly advancing MS and proteomics technologies, we believe that salivary protein biomarkers will be more promising for clinical diagnosis and prognosis of human diseases in the future.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf