The role of Ni substitution in manganite perovskite Li–O2 battery†

Sandra Sajeev, Mewin Vincent, Piotr Garbacz, Marcin Strawski, Chunyu Zhu, Yoshitaka Aoki and Damian Kowalski
{"title":"The role of Ni substitution in manganite perovskite Li–O2 battery†","authors":"Sandra Sajeev, Mewin Vincent, Piotr Garbacz, Marcin Strawski, Chunyu Zhu, Yoshitaka Aoki and Damian Kowalski","doi":"10.1039/D5LF00050E","DOIUrl":null,"url":null,"abstract":"<p >A fundamental understanding of the electrochemical processes in Li–O<small><sub>2</sub></small> batteries is critical for the further development and commercialization of Li–O<small><sub>2</sub></small> and air-breathing battery technology. This study explores the electrochemistry of nickel-substituted manganite perovskites, La<small><sub>0.7</sub></small>Sr<small><sub>0.3</sub></small>Mn<small><sub>1−<em>x</em></sub></small>Ni<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small> (<em>x</em> = 0, 0.1, 0.3, 0.5), which were subsequently used as catalysts in Li–O<small><sub>2</sub></small> battery operating in 1 mol dm<small><sup>−3</sup></small> bis trifluoromethane sulfonimide lithium salt (LiTFSi) in tetra ethylene glycol dimethyl ether (TEGDME) electrolyte. <em>In situ</em> Raman spectroscopy fingerprints on the discharge products correlated with charge–discharge profiles revealed that the electrochemical reaction pathway involves the formation of superoxide (LiO<small><sub>2</sub></small>) followed by reduction to lithium peroxide (Li<small><sub>2</sub></small>O<small><sub>2</sub></small>) during the battery discharge and corresponding two-step oxidation process in the charge phase. The superoxide (LiO<small><sub>2</sub></small>) was exceptionally stable for more than 2 h, which is in contrast to previous studies and expectations for short-lifetime intermediate formations. Electrochemical analysis revealed a significant improvement in the Li–O<small><sub>2</sub></small> battery performance for oxygen electrodes substituted with 10% of nickel, reaching a specific capacity of 3554 mAh g<small><sup>−1</sup></small>. Substitution of Mn with Ni in La<small><sub>0.7</sub></small>Sr<small><sub>0.3</sub></small>Mn<small><sub>0.9</sub></small>Ni<small><sub>0.1</sub></small>O<small><sub>3</sub></small> led to enhanced charge transfer kinetics due to a high surface population of the low valence state of B-site ions (Mn<small><sup>3+</sup></small>/Mn<small><sup>4+</sup></small> ratio) accommodating the presence of e<small><sub>g</sub></small><small><sup>1</sup></small> electrons in line with Jahn–Teller disordered metal–oxygen octahedra effect. The current finding offers new insights for designing of aprotic LiO<small><sub>2</sub></small> batteries.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 4","pages":" 1051-1058"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d5lf00050e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lf/d5lf00050e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A fundamental understanding of the electrochemical processes in Li–O2 batteries is critical for the further development and commercialization of Li–O2 and air-breathing battery technology. This study explores the electrochemistry of nickel-substituted manganite perovskites, La0.7Sr0.3Mn1−xNixO3 (x = 0, 0.1, 0.3, 0.5), which were subsequently used as catalysts in Li–O2 battery operating in 1 mol dm−3 bis trifluoromethane sulfonimide lithium salt (LiTFSi) in tetra ethylene glycol dimethyl ether (TEGDME) electrolyte. In situ Raman spectroscopy fingerprints on the discharge products correlated with charge–discharge profiles revealed that the electrochemical reaction pathway involves the formation of superoxide (LiO2) followed by reduction to lithium peroxide (Li2O2) during the battery discharge and corresponding two-step oxidation process in the charge phase. The superoxide (LiO2) was exceptionally stable for more than 2 h, which is in contrast to previous studies and expectations for short-lifetime intermediate formations. Electrochemical analysis revealed a significant improvement in the Li–O2 battery performance for oxygen electrodes substituted with 10% of nickel, reaching a specific capacity of 3554 mAh g−1. Substitution of Mn with Ni in La0.7Sr0.3Mn0.9Ni0.1O3 led to enhanced charge transfer kinetics due to a high surface population of the low valence state of B-site ions (Mn3+/Mn4+ ratio) accommodating the presence of eg1 electrons in line with Jahn–Teller disordered metal–oxygen octahedra effect. The current finding offers new insights for designing of aprotic LiO2 batteries.

Abstract Image

镍取代在锰钙钛矿Li-O2电池中的作用
对锂氧电池电化学过程的基本理解对于锂氧电池和空气呼吸电池技术的进一步发展和商业化至关重要。本研究探讨了镍取代锰矿钙钛矿La0.7Sr0.3Mn1−xNixO3 (x = 0,0.1, 0.3, 0.5)的电化学性质,并将其作为催化剂应用于Li-O2电池中,该电池使用1 mol dm−3双三氟甲烷磺酰亚胺锂盐(LiTFSi)在四乙二醇二甲醚(TEGDME)电解质中工作。与充放电曲线相关的放电产物原位拉曼光谱指纹图谱揭示了电池放电过程中形成超氧化物(LiO2)并还原为过氧化锂(Li2O2)的电化学反应途径,以及充电阶段相应的两步氧化过程。超氧化物(LiO2)在2小时以上的时间内异常稳定,这与之前的研究和对短寿命中间地层的预期形成了对比。电化学分析表明,用10%的镍取代氧电极可以显著改善锂氧电池的性能,达到3554 mAh g−1的比容量。在La0.7Sr0.3Mn0.9Ni0.1O3中用Ni取代Mn导致电荷转移动力学增强,这是由于b位离子(Mn3+/Mn4+比)的低价态的高表面居群容纳了eg1电子的存在,符合Jahn-Teller无序金属-氧八面体效应。目前的发现为非质子锂离子电池的设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信