Exploring elpasolite double perovskites Ba2XIO6 (X = Au and Ag) for non-toxic and stable photovoltaics: numerical optimization and device analysis

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Devansh Gahlawat, Jaspinder Kaur, Rikmantra Basu, Ajay Kumar Sharma, Uma Rani, Jaya Madan and Rahul Pandey
{"title":"Exploring elpasolite double perovskites Ba2XIO6 (X = Au and Ag) for non-toxic and stable photovoltaics: numerical optimization and device analysis","authors":"Devansh Gahlawat, Jaspinder Kaur, Rikmantra Basu, Ajay Kumar Sharma, Uma Rani, Jaya Madan and Rahul Pandey","doi":"10.1039/D5NJ01075F","DOIUrl":null,"url":null,"abstract":"<p >This work presents a comprehensive numerical investigation of lead-free double perovskites Ba<small><sub>2</sub></small>XIO<small><sub>6</sub></small> (X = Au and Ag) as promising absorber materials for stable, non-toxic photovoltaic devices. By employing one-dimensional device simulations, we first optimized key absorber parameters, including doping concentration and defect density, to maximize power conversion efficiency. Under standard AM 1.5G illumination and optimized absorber conditions, the simulated Ba<small><sub>2</sub></small>AuIO<small><sub>6</sub></small> and Ba<small><sub>2</sub></small>AgIO<small><sub>6</sub></small> devices achieved 14.14% and 11.23% efficiency, respectively. Temperature-dependent performance analysis revealed that both materials maintained operational stability up to 340 K, with negligible efficiency roll-off (&lt;5%) owing to low intrinsic recombination rates. Equivalent-circuit modelling of series and shunt resistances quantified parasitic loss mechanisms, while voltage-profiling and Mott–Schottky analyses elucidated interfacial charge accumulation and built-in potential variations. Spectral response measurements indicated an extended absorption edge for Ba<small><sub>2</sub></small>AuIO<small><sub>6</sub></small> (bandgap ≈ 2.00 eV) compared with Ba<small><sub>2</sub></small>AgIO<small><sub>6</sub></small> (bandgap ≈ 2.26 eV), resulting in a 15% higher photogenerated current density. The lower bandgap of Ba<small><sub>2</sub></small>AuIO<small><sub>6</sub></small> not only broadened its absorption into the red-near infrared region but also elevated its short-circuit current, thereby leading to superior efficiency. Collectively, these findings demonstrated that Ba<small><sub>2</sub></small>AuIO<small><sub>6</sub></small> possessed favourable optoelectronic properties, thermal robustness, and minimal parasitic losses, outperforming its Ag-based analogue, underscoring the potential of elpasolite double perovskites in high-performance, eco-friendly solar energy conversion.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 27","pages":" 11930-11947"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj01075f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a comprehensive numerical investigation of lead-free double perovskites Ba2XIO6 (X = Au and Ag) as promising absorber materials for stable, non-toxic photovoltaic devices. By employing one-dimensional device simulations, we first optimized key absorber parameters, including doping concentration and defect density, to maximize power conversion efficiency. Under standard AM 1.5G illumination and optimized absorber conditions, the simulated Ba2AuIO6 and Ba2AgIO6 devices achieved 14.14% and 11.23% efficiency, respectively. Temperature-dependent performance analysis revealed that both materials maintained operational stability up to 340 K, with negligible efficiency roll-off (<5%) owing to low intrinsic recombination rates. Equivalent-circuit modelling of series and shunt resistances quantified parasitic loss mechanisms, while voltage-profiling and Mott–Schottky analyses elucidated interfacial charge accumulation and built-in potential variations. Spectral response measurements indicated an extended absorption edge for Ba2AuIO6 (bandgap ≈ 2.00 eV) compared with Ba2AgIO6 (bandgap ≈ 2.26 eV), resulting in a 15% higher photogenerated current density. The lower bandgap of Ba2AuIO6 not only broadened its absorption into the red-near infrared region but also elevated its short-circuit current, thereby leading to superior efficiency. Collectively, these findings demonstrated that Ba2AuIO6 possessed favourable optoelectronic properties, thermal robustness, and minimal parasitic losses, outperforming its Ag-based analogue, underscoring the potential of elpasolite double perovskites in high-performance, eco-friendly solar energy conversion.

Abstract Image

探索双钙钛矿Ba2XIO6 (X = Au和Ag)的无毒和稳定光伏:数值优化和器件分析
本文对无铅双钙钛矿Ba2XIO6 (X = Au和Ag)作为稳定无毒光伏器件的吸收材料进行了全面的数值研究。通过一维器件模拟,我们首先优化了吸收剂的关键参数,包括掺杂浓度和缺陷密度,以最大限度地提高功率转换效率。在标准AM 1.5G照明和优化吸收体条件下,模拟的Ba2AuIO6和Ba2AgIO6器件的效率分别达到14.14%和11.23%。温度相关的性能分析显示,这两种材料在高达340 K的温度下都保持了工作稳定性,由于内在复合率低,效率滚降(<5%)可以忽略不计。串联和分流电阻的等效电路建模量化了寄生损耗机制,而电压谱和莫特-肖特基分析阐明了界面电荷积累和内置电位变化。光谱响应测量表明,与Ba2AgIO6(带隙≈2.26 eV)相比,Ba2AuIO6(带隙≈2.00 eV)的吸收边延长,导致光生电流密度提高15%。Ba2AuIO6较低的带隙不仅扩大了其对红-近红外区域的吸收,而且提高了其短路电流,从而提高了效率。总的来说,这些发现表明,Ba2AuIO6具有良好的光电性能、热鲁棒性和最小的寄生损耗,优于银基类似物,强调了elpasolite双钙钛矿在高性能、环保太阳能转换方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信