Jiahui Hou, Zexin Wang, Zifei Meng, Jinzhao Fu, Zeyi Yao, Wenting Jin, Xiaotu Ma, Zhenzhen Yang and Yan Wang
{"title":"Ultra-high efficient lithium recovery via terephthalic acid from spent lithium-ion batteries†","authors":"Jiahui Hou, Zexin Wang, Zifei Meng, Jinzhao Fu, Zeyi Yao, Wenting Jin, Xiaotu Ma, Zhenzhen Yang and Yan Wang","doi":"10.1039/D5SE00547G","DOIUrl":null,"url":null,"abstract":"<p >The recovery of lithium from spent lithium-ion batteries (LIBs) is a critical step in advancing sustainability within the battery industry. Traditional lithium extraction methods from end-of-life LIBs predominantly rely on chemical leaching techniques. However, these methods often involve the excessive use of acids, leading to substantial environmental concerns. Additionally, their non-selective nature can compromise the purity of the recovered lithium salt. To achieve battery-grade purity, further purification and recovery processes are necessary. In this study, we introduce a universal and eco-friendly process for lithium recovery, employing terephthalic acid to selectively extract lithium prior to the recycling of other valuable metals. This innovative method achieves lithium recovery rates exceeding 98.53% from layered oxide cathodes and 98.53% from lithium iron phosphate cathodes, delivering an exceptional purity level of 99.95%. By demonstrating applicability across a variety of cathode materials, this approach establishes a universal, sustainable and efficient solution for LIB recycling. The high-purity lithium extraction enabled by this process supports the comprehensive utilization of valuable resources, contributing significantly to the development of a circular economy for battery materials.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 14","pages":" 3862-3874"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d5se00547g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00547g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The recovery of lithium from spent lithium-ion batteries (LIBs) is a critical step in advancing sustainability within the battery industry. Traditional lithium extraction methods from end-of-life LIBs predominantly rely on chemical leaching techniques. However, these methods often involve the excessive use of acids, leading to substantial environmental concerns. Additionally, their non-selective nature can compromise the purity of the recovered lithium salt. To achieve battery-grade purity, further purification and recovery processes are necessary. In this study, we introduce a universal and eco-friendly process for lithium recovery, employing terephthalic acid to selectively extract lithium prior to the recycling of other valuable metals. This innovative method achieves lithium recovery rates exceeding 98.53% from layered oxide cathodes and 98.53% from lithium iron phosphate cathodes, delivering an exceptional purity level of 99.95%. By demonstrating applicability across a variety of cathode materials, this approach establishes a universal, sustainable and efficient solution for LIB recycling. The high-purity lithium extraction enabled by this process supports the comprehensive utilization of valuable resources, contributing significantly to the development of a circular economy for battery materials.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.