Improved Performance of Near-Infrared $\bf{S}{{\bf{i}}_{1 - x}}\bf{S}{{\bf{n}}_x}/\text{Si}$ Metal-Oxide- Semiconductor Field-Effect Phototransistors by Utilizing the Grating-Gate

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Harshvardhan Kumar;Bhavika Agarwal;Shean-Jen Chen
{"title":"Improved Performance of Near-Infrared $\\bf{S}{{\\bf{i}}_{1 - x}}\\bf{S}{{\\bf{n}}_x}/\\text{Si}$ Metal-Oxide- Semiconductor Field-Effect Phototransistors by Utilizing the Grating-Gate","authors":"Harshvardhan Kumar;Bhavika Agarwal;Shean-Jen Chen","doi":"10.1109/LSENS.2025.3582507","DOIUrl":null,"url":null,"abstract":"This letter presents that novel grating-gate (GG) <inline-formula><tex-math>$\\mathrm{S}{{\\mathrm{i}}_{1 - x}}\\mathrm{S}{{\\mathrm{n}}_x}$</tex-math></inline-formula> <italic>p</i>-channel metal-oxide-semiconductor field-effect phototransistors (MOSFEPTs) grown on the Si platform are explicitly designed for near-infrared (NIR) photodetection applications. The proposed device can be fabricated using 0.8-μm complementary-metal-oxide semiconductor (CMOS) technology and addresses the challenge of integrating a detector with CMOS processing circuits. The proposed structure utilizes the GG to enhance the transmission and absorption of incident light into the channel, leveraging the principles of Fabry–Perot and surface plasmon resonance. Furthermore, the GG plays a crucial role in minimizing the drain current under dark by effectively reducing the gate leakage current. The result demonstrates that the MOSFEPT featuring a GG achieves a drain current (<italic>I</i><sub>DS</sub> = ∼0.73 μA at <italic>V</i><sub>GS</sub> = −3 V and <italic>V</i><sub>DS</sub> = −1.5 V) that is two orders of magnitude lower in the dark than the conventional-gate MOSFEPT (<italic>I</i><sub>DS</sub> = ∼68.8 μA at <italic>V</i><sub>GS</sub> = −3 V and <italic>V</i><sub>DS</sub> = −1.5 V). Thus, the MOSFEPT with a GG demonstrates a remarkable detectivity value of <inline-formula><tex-math>$2.15 \\times {{10}^{10}}$</tex-math></inline-formula> Jones and a low noise-equivalent power value of <inline-formula><tex-math>$1.46 \\times {{10}^{ - 13}}$</tex-math></inline-formula> WHz<sup>−0.5</sup> at <italic>λ</i> = 850 nm. Furthermore, the MOSFEPT featuring a GG achieves exceptionally high responsivity and external quantum efficiency of 5.06 A/W and 674%, respectively, at <italic>λ</i> = 850 nm with <inline-formula><tex-math>${{V}_{\\text{DS}}}$</tex-math></inline-formula> <italic>V</i><sub>DS</sub> = −1.5 V and <inline-formula><tex-math>${{V}_{\\text{GS}}}$</tex-math></inline-formula> <italic>V</i><sub>GS</sub> = −3 V, exceeding previously reported values and highlighting its potential for advanced NIR detection applications.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 7","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11048587/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents that novel grating-gate (GG) $\mathrm{S}{{\mathrm{i}}_{1 - x}}\mathrm{S}{{\mathrm{n}}_x}$ p-channel metal-oxide-semiconductor field-effect phototransistors (MOSFEPTs) grown on the Si platform are explicitly designed for near-infrared (NIR) photodetection applications. The proposed device can be fabricated using 0.8-μm complementary-metal-oxide semiconductor (CMOS) technology and addresses the challenge of integrating a detector with CMOS processing circuits. The proposed structure utilizes the GG to enhance the transmission and absorption of incident light into the channel, leveraging the principles of Fabry–Perot and surface plasmon resonance. Furthermore, the GG plays a crucial role in minimizing the drain current under dark by effectively reducing the gate leakage current. The result demonstrates that the MOSFEPT featuring a GG achieves a drain current (IDS = ∼0.73 μA at VGS = −3 V and VDS = −1.5 V) that is two orders of magnitude lower in the dark than the conventional-gate MOSFEPT (IDS = ∼68.8 μA at VGS = −3 V and VDS = −1.5 V). Thus, the MOSFEPT with a GG demonstrates a remarkable detectivity value of $2.15 \times {{10}^{10}}$ Jones and a low noise-equivalent power value of $1.46 \times {{10}^{ - 13}}$ WHz−0.5 at λ = 850 nm. Furthermore, the MOSFEPT featuring a GG achieves exceptionally high responsivity and external quantum efficiency of 5.06 A/W and 674%, respectively, at λ = 850 nm with ${{V}_{\text{DS}}}$ VDS = −1.5 V and ${{V}_{\text{GS}}}$ VGS = −3 V, exceeding previously reported values and highlighting its potential for advanced NIR detection applications.
利用栅极提高近红外$\bf{S}{{\bf{i}}_{1 - x}}\bf{S}{{\bf{n}}_x}/\text{Si}$金属氧化物半导体场效应光电晶体管的性能
本文介绍了在Si平台上生长的新型光栅栅(GG) $\mathrm{S}{\mathrm{i}}_{1 - x}}\mathrm{S}{{\mathrm{n}}_x}$ p通道金属氧化物半导体场效应光电晶体管(mosfept)是专门为近红外(NIR)光探测应用而设计的。该器件可采用0.8 μm互补金属氧化物半导体(CMOS)技术制造,解决了探测器与CMOS处理电路集成的挑战。所提出的结构利用GG来增强入射光进入通道的传输和吸收,利用法布里-珀罗和表面等离子体共振的原理。此外,通过有效地降低栅极漏电流,GG在最小化暗下漏极电流方面起着至关重要的作用。结果表明,具有GG的MOSFEPT在黑暗中获得的漏极电流(在VGS =−3 V和VDS =−1.5 V时IDS = ~ 0.73 μA)比传统栅极MOSFEPT(在VGS =−3 V和VDS =−1.5 V时IDS = ~ 68.8 μA)低两个数量级。因此,具有GG的MOSFEPT在λ = 850 nm处的探测值为$2.15 \倍{{10}^{10}}$ Jones,低噪声等效功率值为$1.46 \倍{{10}^{- 13}}$ WHz−0.5。此外,具有GG的MOSFEPT在λ = 850 nm, ${{V}_{\text{DS}}}$ VDS = - 1.5 V和${{V}_{\text{GS}}}$ VGS = - 3 V处获得了异常高的响应率和外量子效率,分别为5.06 a /W和674%,超过了先前报道的值,突出了其在高级近红外探测应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信