{"title":"Bimetallic oxide catalysts for CO2 hydrogenation to methanol: Recent advances and challenges","authors":"Jian-Feng Wu , Li-Ye Liang , Zheng Che , Yu-Ting Miao , Lingjun Chou","doi":"10.1016/S1872-2067(25)64689-4","DOIUrl":null,"url":null,"abstract":"<div><div>Against the backdrop of global energy and environmental crises, the technology of CO<sub>2</sub> hydrogenation to produce methanol is garnering widespread attention as an innovative carbon capture and utilization solution. Bimetallic oxide catalysts have emerged as the most promising research subject in the field due to their exceptional catalytic performance and stability. The performance of bimetallic oxide catalysts is influenced by multiple factors, including the selection of carrier materials, the addition of promoters, and the synthesis process. Different types of bimetallic oxide catalysts exhibit significant differences in microstructure, surface active sites, and electronic structure, which directly determine the yield and selectivity of methanol. Although bimetallic oxide catalysts offer significant advantages over traditional copper-based catalysts, they still encounter challenges related to activity and cost. In order to enhance catalyst performance, future investigations must delve into microstructure control, surface modification, and reaction kinetics.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"73 ","pages":"Pages 62-78"},"PeriodicalIF":15.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206725646894","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Against the backdrop of global energy and environmental crises, the technology of CO2 hydrogenation to produce methanol is garnering widespread attention as an innovative carbon capture and utilization solution. Bimetallic oxide catalysts have emerged as the most promising research subject in the field due to their exceptional catalytic performance and stability. The performance of bimetallic oxide catalysts is influenced by multiple factors, including the selection of carrier materials, the addition of promoters, and the synthesis process. Different types of bimetallic oxide catalysts exhibit significant differences in microstructure, surface active sites, and electronic structure, which directly determine the yield and selectivity of methanol. Although bimetallic oxide catalysts offer significant advantages over traditional copper-based catalysts, they still encounter challenges related to activity and cost. In order to enhance catalyst performance, future investigations must delve into microstructure control, surface modification, and reaction kinetics.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.