Enikő Mészáros , Márton Szabó , Kamilla Kovács , Etelka Kovács , Klaudia Hoffmann , Katalin Perei , Attila Bodor , Gábor Feigl
{"title":"Preliminary phytotoxicological screening of personal protective equipment leachates: Species-specific root growth responses in early plant stages","authors":"Enikő Mészáros , Márton Szabó , Kamilla Kovács , Etelka Kovács , Klaudia Hoffmann , Katalin Perei , Attila Bodor , Gábor Feigl","doi":"10.1016/j.cpb.2025.100516","DOIUrl":null,"url":null,"abstract":"<div><div>During the COVID-19 pandemic, the widespread use of single-use personal protective equipment (PPE), such as masks and gloves, led to their increasing appearance in natural environments. These items continue to be detected in plastic pollution surveys, raising concerns about their ecological impacts, as PPE waste can release smaller plastic fragments and hazardous compounds during degradation. This study examines the effects of polypropylene mask, latex, and nitrile glove leachates on early root development in 12 species of crops, including legumes, crucifers, monocots, and other dicots. Leachates were chemically characterized using humification indices and plastic aging was assessed via Fourier transform infrared spectroscopy. The results revealed species-specific phytotoxic responses. Crimson clover showed strong sensitivity to all leachates, with reduced germination, germination index, and root elongation. Among the crucifers, radish was inhibited, while white mustard and cress exhibited root stimulation under certain treatments. Buckwheat showed high sensitivity to latex leachates, while flax showed variable responses. Monocots generally tolerated PPE leachates, rice showed minimal response, and sorghum showed growth stimulation. These differences probably reflect species-specific physiological traits and the composition of the leachates. The use of multiple plant species also highlights contrasting sensitivity profiles that are not apparent in single-species tests. This preliminary screening demonstrates that PPE-derived leachates can alter early plant development in a species-dependent manner. The findings underscore the ecological risks posed by PPE waste and support the need for further studies on the environmental impact of pandemic-related plastic pollution.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"43 ","pages":"Article 100516"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662825000842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
During the COVID-19 pandemic, the widespread use of single-use personal protective equipment (PPE), such as masks and gloves, led to their increasing appearance in natural environments. These items continue to be detected in plastic pollution surveys, raising concerns about their ecological impacts, as PPE waste can release smaller plastic fragments and hazardous compounds during degradation. This study examines the effects of polypropylene mask, latex, and nitrile glove leachates on early root development in 12 species of crops, including legumes, crucifers, monocots, and other dicots. Leachates were chemically characterized using humification indices and plastic aging was assessed via Fourier transform infrared spectroscopy. The results revealed species-specific phytotoxic responses. Crimson clover showed strong sensitivity to all leachates, with reduced germination, germination index, and root elongation. Among the crucifers, radish was inhibited, while white mustard and cress exhibited root stimulation under certain treatments. Buckwheat showed high sensitivity to latex leachates, while flax showed variable responses. Monocots generally tolerated PPE leachates, rice showed minimal response, and sorghum showed growth stimulation. These differences probably reflect species-specific physiological traits and the composition of the leachates. The use of multiple plant species also highlights contrasting sensitivity profiles that are not apparent in single-species tests. This preliminary screening demonstrates that PPE-derived leachates can alter early plant development in a species-dependent manner. The findings underscore the ecological risks posed by PPE waste and support the need for further studies on the environmental impact of pandemic-related plastic pollution.
期刊介绍:
Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.