Subspace-orbit randomized algorithms for low rank approximations of third-order tensors in t-product format

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xuezhong Wang , Kai Wang , Changxin Mo
{"title":"Subspace-orbit randomized algorithms for low rank approximations of third-order tensors in t-product format","authors":"Xuezhong Wang ,&nbsp;Kai Wang ,&nbsp;Changxin Mo","doi":"10.1016/j.patcog.2025.112066","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on computing low rank approximations of third-order tensors in the t-product format using random techniques. Given a truncated term <span><math><mi>K</mi></math></span>, we derive randomized algorithms for approximating the <span><math><mi>K</mi></math></span>-term t-SVD, which is called as the subspace-orbit randomized t-SVD (sort-SVD). Additionally, we conduct an analysis of the deterministic and probabilistic error bounds of the proposed algorithm, subject to certain assumptions. We integrate the present algorithm with the power method to enhance the accuracy of the approximate the <span><math><mi>K</mi></math></span>-term t-SVD. Furthermore, we demonstrate the effectiveness of our algorithms through numerous numerical examples. Lastly, the proposed algorithms are employed to compress data tensors from various image databases.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"170 ","pages":"Article 112066"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325007265","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on computing low rank approximations of third-order tensors in the t-product format using random techniques. Given a truncated term K, we derive randomized algorithms for approximating the K-term t-SVD, which is called as the subspace-orbit randomized t-SVD (sort-SVD). Additionally, we conduct an analysis of the deterministic and probabilistic error bounds of the proposed algorithm, subject to certain assumptions. We integrate the present algorithm with the power method to enhance the accuracy of the approximate the K-term t-SVD. Furthermore, we demonstrate the effectiveness of our algorithms through numerous numerical examples. Lastly, the proposed algorithms are employed to compress data tensors from various image databases.
t积格式三阶张量低秩逼近的子空间-轨道随机化算法
本文主要研究了用随机技术计算t积格式的三阶张量的低秩逼近。给定截断项K,我们推导出近似K项t-SVD的随机算法,称为子空间轨道随机化t-SVD (sort-SVD)。此外,我们根据某些假设,对所提出算法的确定性和概率误差范围进行了分析。为了提高k项t-SVD近似的精度,我们将该算法与幂方法相结合。此外,我们通过大量的数值算例证明了算法的有效性。最后,利用本文提出的算法对各种图像数据库中的数据张量进行压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信