Mechanical information enhanced battery state-of-health estimation

IF 15 1区 工程技术 Q1 ENERGY & FUELS
Xubo Gu , Xinyuan Wang , Yao Ren , Wenqing Zhou , Xun Huan , Jason Siegel , Weiran Jiang , Ziyou Song
{"title":"Mechanical information enhanced battery state-of-health estimation","authors":"Xubo Gu ,&nbsp;Xinyuan Wang ,&nbsp;Yao Ren ,&nbsp;Wenqing Zhou ,&nbsp;Xun Huan ,&nbsp;Jason Siegel ,&nbsp;Weiran Jiang ,&nbsp;Ziyou Song","doi":"10.1016/j.etran.2025.100440","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate estimation of the state of health (SOH) is crucial for the safe operation of batteries. Mechanical features, in particular, offer significant potential for improving SOH estimation by directly reflecting key internal processes within batteries. However, research on the contribution of mechanical features to SOH estimation remains limited. This study demonstrates the effectiveness of mechanical features for SOH estimation in pouch cells under various operating conditions and scenarios. The results show that mechanical features provide reliable SOH estimates across different temperatures, C-rates, and charging profiles, and they are especially robust under real-world driving conditions. The mechanical features typically achieve at least a 28.26% reduction in prediction error. Notably, in the driving scenario, the mean absolute percentage error reaches an impressive low of 0.65%. Furthermore, this work introduces an evaluation framework to systematically benchmark features derived from electrical, thermal, and mechanical signals based on their overall predictive capabilities. Finally, detailed physical interpretations are provided to explain the effectiveness of mechanical features.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"25 ","pages":"Article 100440"},"PeriodicalIF":15.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116825000475","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate estimation of the state of health (SOH) is crucial for the safe operation of batteries. Mechanical features, in particular, offer significant potential for improving SOH estimation by directly reflecting key internal processes within batteries. However, research on the contribution of mechanical features to SOH estimation remains limited. This study demonstrates the effectiveness of mechanical features for SOH estimation in pouch cells under various operating conditions and scenarios. The results show that mechanical features provide reliable SOH estimates across different temperatures, C-rates, and charging profiles, and they are especially robust under real-world driving conditions. The mechanical features typically achieve at least a 28.26% reduction in prediction error. Notably, in the driving scenario, the mean absolute percentage error reaches an impressive low of 0.65%. Furthermore, this work introduces an evaluation framework to systematically benchmark features derived from electrical, thermal, and mechanical signals based on their overall predictive capabilities. Finally, detailed physical interpretations are provided to explain the effectiveness of mechanical features.
机械信息增强了电池健康状态的估计
准确估计电池的健康状态(SOH)对电池的安全运行至关重要。特别是机械特性,通过直接反映电池内部的关键过程,为改善SOH估计提供了巨大的潜力。然而,力学特征对SOH估计的贡献研究仍然有限。本研究证明了在各种操作条件和场景下,袋状电池中SOH估计的机械特征的有效性。结果表明,机械特性可以在不同温度、c -速率和充电模式下提供可靠的SOH估计,并且在实际驾驶条件下尤其可靠。机械特征通常可以使预测误差降低至少28.26%。值得注意的是,在驾驶场景中,平均绝对百分比误差达到了令人印象深刻的0.65%的低点。此外,本研究还引入了一个评估框架,基于电、热和机械信号的整体预测能力,系统地对其特征进行基准测试。最后,提供了详细的物理解释来解释力学特征的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Etransportation
Etransportation Engineering-Automotive Engineering
CiteScore
19.80
自引率
12.60%
发文量
57
审稿时长
39 days
期刊介绍: eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation. The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment. Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信