Partially removing galactose unit on tamarind gum improves the gel-related features of tamarind gum/xanthan gels by strengthening their synergistic assembly
Zhiyong Niu , Xizhong Liu , Yunying Li , Mengzhou Zhou , Yi Liu , Binjia Zhang , Guohua Zhao , Jia Chen , Dongling Qiao , Fengwei Xie
{"title":"Partially removing galactose unit on tamarind gum improves the gel-related features of tamarind gum/xanthan gels by strengthening their synergistic assembly","authors":"Zhiyong Niu , Xizhong Liu , Yunying Li , Mengzhou Zhou , Yi Liu , Binjia Zhang , Guohua Zhao , Jia Chen , Dongling Qiao , Fengwei Xie","doi":"10.1016/j.foodhyd.2025.111728","DOIUrl":null,"url":null,"abstract":"<div><div>The amalgamation of tamarind gum (TMG) and xanthan generates synergistic interaction gels (SIGs), which have been used to design novel textural systems and to develop cell-cultured meat as well as health foods tailored for elderly individuals with dysphagia. However, the strong aggregated tendency of TMG chains limited the expose of active sites, thereby hindering full binding with xanthan and resulting in suboptimal gel properties. This study demonstrated that the removal of galactose units from TMG enhances specific interactions between TMG and xanthan by modulating the aggregation behavior of TMG chains. After removing galactose to 71.30 %, the reduced steric hindrance facilitated the transformation of disordered TMG chains into a helical structure, thereby exposing more binding sites (<em>i.e.</em>, hydrophilic groups) to interact with pyruvate groups on xanthan. This enhanced the specific interactions, as evidenced by an increase in enthalpy change from 2.80 × 10<sup>−2</sup> J/g to 3.90 × 10<sup>−2</sup> J/g, and thus the gel structure (suggested by the increased <em>n</em> and reduced <span><math><mrow><msub><mi>ξ</mi><mrow><mi>c</mi><mi>h</mi><mi>a</mi><mi>i</mi><mi>n</mi></mrow></msub></mrow></math></span> values in Table 1) and gel strength both in <em>G</em>′ and gel hardness. However, further removal of galactose reduced the dissociation ability of TMG chains from clusters and resulted in the formation of elongated clusters, thereby decreasing the contact surface between TMG and xanthan, which weakened their specific interactions and gel strength. These results provide insights for the design and development of SIG-based systems in food industry.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"170 ","pages":"Article 111728"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X25006885","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The amalgamation of tamarind gum (TMG) and xanthan generates synergistic interaction gels (SIGs), which have been used to design novel textural systems and to develop cell-cultured meat as well as health foods tailored for elderly individuals with dysphagia. However, the strong aggregated tendency of TMG chains limited the expose of active sites, thereby hindering full binding with xanthan and resulting in suboptimal gel properties. This study demonstrated that the removal of galactose units from TMG enhances specific interactions between TMG and xanthan by modulating the aggregation behavior of TMG chains. After removing galactose to 71.30 %, the reduced steric hindrance facilitated the transformation of disordered TMG chains into a helical structure, thereby exposing more binding sites (i.e., hydrophilic groups) to interact with pyruvate groups on xanthan. This enhanced the specific interactions, as evidenced by an increase in enthalpy change from 2.80 × 10−2 J/g to 3.90 × 10−2 J/g, and thus the gel structure (suggested by the increased n and reduced values in Table 1) and gel strength both in G′ and gel hardness. However, further removal of galactose reduced the dissociation ability of TMG chains from clusters and resulted in the formation of elongated clusters, thereby decreasing the contact surface between TMG and xanthan, which weakened their specific interactions and gel strength. These results provide insights for the design and development of SIG-based systems in food industry.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.