The general factor of personality (GFP) in natural language: A deep learning approach

IF 3.1 2区 心理学 Q2 PSYCHOLOGY, SOCIAL
Dimitri van der Linden , Andrew Cutler , Putri A. van der Linden , Curtis S. Dunkel
{"title":"The general factor of personality (GFP) in natural language: A deep learning approach","authors":"Dimitri van der Linden ,&nbsp;Andrew Cutler ,&nbsp;Putri A. van der Linden ,&nbsp;Curtis S. Dunkel","doi":"10.1016/j.jrp.2025.104635","DOIUrl":null,"url":null,"abstract":"<div><div>Using Large Language Models (LLMs), we tested the presence of a general factor of personality (GFP) in trait words in natural language (e.g., thousands of books and posts on internet). We included three set of trait words, extracted from well-known classical lexical studies on personality. The general factor we found represented a continuum of social desirable traits, similar to a typical GFP. Moreover, this LLM-based general factor correlated <em>r</em> = 0.86 with the general factor in the original Saucier and Goldberg (1997) data. The findings were robust regarding type of machine learning prompts and statistical methods used. The findings indicate that in natural language, a GFP exists that is similar to previous lexical studies using human raters.</div></div>","PeriodicalId":48406,"journal":{"name":"Journal of Research in Personality","volume":"117 ","pages":"Article 104635"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research in Personality","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0092656625000674","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, SOCIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Using Large Language Models (LLMs), we tested the presence of a general factor of personality (GFP) in trait words in natural language (e.g., thousands of books and posts on internet). We included three set of trait words, extracted from well-known classical lexical studies on personality. The general factor we found represented a continuum of social desirable traits, similar to a typical GFP. Moreover, this LLM-based general factor correlated r = 0.86 with the general factor in the original Saucier and Goldberg (1997) data. The findings were robust regarding type of machine learning prompts and statistical methods used. The findings indicate that in natural language, a GFP exists that is similar to previous lexical studies using human raters.
自然语言中的一般人格因素(GFP):一种深度学习方法
使用大型语言模型(llm),我们测试了自然语言(例如,成千上万的书籍和互联网上的帖子)特征性词汇中人格的一般因素(GFP)的存在。我们收录了三组特征词,摘自著名的经典人格词汇研究。我们发现的一般因素代表了社会理想特征的连续体,类似于典型的GFP。此外,基于llm的一般因子与Saucier and Goldberg(1997)原始数据中的一般因子相关r = 0.86。关于机器学习提示类型和使用的统计方法,研究结果是稳健的。研究结果表明,在自然语言中,存在一种与先前使用人类评分器进行的词汇研究相似的GFP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
6.10%
发文量
102
审稿时长
67 days
期刊介绍: Emphasizing experimental and descriptive research, the Journal of Research in Personality presents articles that examine important issues in the field of personality and in related fields basic to the understanding of personality. The subject matter includes treatments of genetic, physiological, motivational, learning, perceptual, cognitive, and social processes of both normal and abnormal kinds in human and animal subjects. Features: • Papers that present integrated sets of studies that address significant theoretical issues relating to personality. • Theoretical papers and critical reviews of current experimental and methodological interest. • Single, well-designed studies of an innovative nature. • Brief reports, including replication or null result studies of previously reported findings, or a well-designed studies addressing questions of limited scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信