Quasisymmetric Schur Q-functions and peak Young quasisymmetric Schur functions

IF 0.9 3区 数学 Q1 MATHEMATICS
Seung-Il Choi , Sun-Young Nam , Young-Tak Oh
{"title":"Quasisymmetric Schur Q-functions and peak Young quasisymmetric Schur functions","authors":"Seung-Il Choi ,&nbsp;Sun-Young Nam ,&nbsp;Young-Tak Oh","doi":"10.1016/j.ejc.2025.104213","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we explore the relationship between quasisymmetric Schur <span><math><mi>Q</mi></math></span>-functions and peak Young quasisymmetric Schur functions. We introduce a bijection on <span><math><mrow><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mrow><mo>{</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>∣</mo><mi>T</mi><mo>∈</mo><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span> and <span><math><mrow><mo>{</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>∣</mo><mi>T</mi><mo>∈</mo><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span> share identical descent distributions. Here, <span><math><mrow><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> is the set of standard peak immaculate tableaux of shape <span><math><mi>α</mi></math></span>, and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> denote column reading and row reading, respectively. By combining this equidistribution with the algorithm developed by Allen, Hallam, and Mason, we demonstrate that the transition matrix from the basis of quasisymmetric Schur <span><math><mi>Q</mi></math></span>-functions to the basis of peak Young quasisymmetric Schur functions is upper triangular, with entries being non-negative integers. Furthermore, we provide explicit descriptions of the expansion of peak Young quasisymmetric Schur functions in specific cases, in terms of quasisymmetric Schur <span><math><mi>Q</mi></math></span>-functions. We also investigate the combinatorial properties of standard peak immaculate tableaux, standard Young composition tableaux, and standard peak Young composition tableaux. We provide a hook length formula for <span><math><mrow><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> and show that standard Young composition tableaux and standard peak Young composition tableaux can be each bijectively mapped to words satisfying suitable conditions. Especially, cases of compositions with rectangular shape are examined in detail.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104213"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore the relationship between quasisymmetric Schur Q-functions and peak Young quasisymmetric Schur functions. We introduce a bijection on SPIT(α) such that {wc(T)TSPIT(α)} and {wr(T)TSPIT(α)} share identical descent distributions. Here, SPIT(α) is the set of standard peak immaculate tableaux of shape α, and wc and wr denote column reading and row reading, respectively. By combining this equidistribution with the algorithm developed by Allen, Hallam, and Mason, we demonstrate that the transition matrix from the basis of quasisymmetric Schur Q-functions to the basis of peak Young quasisymmetric Schur functions is upper triangular, with entries being non-negative integers. Furthermore, we provide explicit descriptions of the expansion of peak Young quasisymmetric Schur functions in specific cases, in terms of quasisymmetric Schur Q-functions. We also investigate the combinatorial properties of standard peak immaculate tableaux, standard Young composition tableaux, and standard peak Young composition tableaux. We provide a hook length formula for SPIT(α) and show that standard Young composition tableaux and standard peak Young composition tableaux can be each bijectively mapped to words satisfying suitable conditions. Especially, cases of compositions with rectangular shape are examined in detail.
准对称舒尔q函数和峰值杨准对称舒尔函数
本文探讨了拟对称Schur q函数与峰值Young拟对称Schur函数之间的关系。我们在SPIT(α)上引入一个双射,使得{wc(T)∣T∈SPIT(α)}和{wr(T)∣T∈SPIT(α)}具有相同的下降分布。其中,SPIT(α)为形状为α的标准峰完美表集合,wc和wr分别表示列读取和行读取。通过将该等分布与Allen、Hallam和Mason提出的算法相结合,证明了从准对称Schur q -函数基到峰值Young准对称Schur函数基的转移矩阵是上三角形的,其项为非负整数。在此基础上,用准对称Schur q函数给出了特定情况下峰值Young准对称Schur函数的展开式。我们还研究了标准峰无原色表、标准杨构图表和标准杨构图表的组合特性。我们给出了一个SPIT(α)的钩长公式,并证明了标准Young组合表和标准峰值Young组合表都可以客观地映射到满足适当条件的单词上。特别对矩形组合物的情况进行了详细的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信