{"title":"Quasisymmetric Schur Q-functions and peak Young quasisymmetric Schur functions","authors":"Seung-Il Choi , Sun-Young Nam , Young-Tak Oh","doi":"10.1016/j.ejc.2025.104213","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we explore the relationship between quasisymmetric Schur <span><math><mi>Q</mi></math></span>-functions and peak Young quasisymmetric Schur functions. We introduce a bijection on <span><math><mrow><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mrow><mo>{</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>∣</mo><mi>T</mi><mo>∈</mo><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span> and <span><math><mrow><mo>{</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>∣</mo><mi>T</mi><mo>∈</mo><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span> share identical descent distributions. Here, <span><math><mrow><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> is the set of standard peak immaculate tableaux of shape <span><math><mi>α</mi></math></span>, and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> denote column reading and row reading, respectively. By combining this equidistribution with the algorithm developed by Allen, Hallam, and Mason, we demonstrate that the transition matrix from the basis of quasisymmetric Schur <span><math><mi>Q</mi></math></span>-functions to the basis of peak Young quasisymmetric Schur functions is upper triangular, with entries being non-negative integers. Furthermore, we provide explicit descriptions of the expansion of peak Young quasisymmetric Schur functions in specific cases, in terms of quasisymmetric Schur <span><math><mi>Q</mi></math></span>-functions. We also investigate the combinatorial properties of standard peak immaculate tableaux, standard Young composition tableaux, and standard peak Young composition tableaux. We provide a hook length formula for <span><math><mrow><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> and show that standard Young composition tableaux and standard peak Young composition tableaux can be each bijectively mapped to words satisfying suitable conditions. Especially, cases of compositions with rectangular shape are examined in detail.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104213"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we explore the relationship between quasisymmetric Schur -functions and peak Young quasisymmetric Schur functions. We introduce a bijection on such that and share identical descent distributions. Here, is the set of standard peak immaculate tableaux of shape , and and denote column reading and row reading, respectively. By combining this equidistribution with the algorithm developed by Allen, Hallam, and Mason, we demonstrate that the transition matrix from the basis of quasisymmetric Schur -functions to the basis of peak Young quasisymmetric Schur functions is upper triangular, with entries being non-negative integers. Furthermore, we provide explicit descriptions of the expansion of peak Young quasisymmetric Schur functions in specific cases, in terms of quasisymmetric Schur -functions. We also investigate the combinatorial properties of standard peak immaculate tableaux, standard Young composition tableaux, and standard peak Young composition tableaux. We provide a hook length formula for and show that standard Young composition tableaux and standard peak Young composition tableaux can be each bijectively mapped to words satisfying suitable conditions. Especially, cases of compositions with rectangular shape are examined in detail.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.