Unique continuation for a gradient inequality with Ln potential

IF 1.2 3区 数学 Q1 MATHEMATICS
Adam Coffman, Yifei Pan, Yuan Zhang
{"title":"Unique continuation for a gradient inequality with Ln potential","authors":"Adam Coffman,&nbsp;Yifei Pan,&nbsp;Yuan Zhang","doi":"10.1016/j.jmaa.2025.129847","DOIUrl":null,"url":null,"abstract":"<div><div>We establish a unique continuation property for solutions of the differential inequality <span><math><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mo>≤</mo><mi>V</mi><mo>|</mo><mi>u</mi><mo>|</mo></math></span>, where <em>V</em> is locally <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> integrable on a domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. A stronger uniqueness result is obtained if in addition the solutions are locally Lipschitz. One application is a finite order vanishing property in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> sense for the exponential of <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msup></math></span> functions. We further discuss related results for the Cauchy-Riemann operator <span><math><mover><mrow><mo>∂</mo></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and characterize the vanishing order for smooth extension of holomorphic functions across the boundary.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 1","pages":"Article 129847"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006286","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish a unique continuation property for solutions of the differential inequality |u|V|u|, where V is locally Ln integrable on a domain in Rn. A stronger uniqueness result is obtained if in addition the solutions are locally Lipschitz. One application is a finite order vanishing property in the L2 sense for the exponential of W1,n functions. We further discuss related results for the Cauchy-Riemann operator ¯ and characterize the vanishing order for smooth extension of holomorphic functions across the boundary.
具有Ln势的梯度不等式的唯一延拓
我们建立了微分不等式|∇u|≤V|u|解的唯一连续性质,其中V在Rn中的定域上是局部Ln可积的。当解局部为Lipschitz时,得到了一个更强的唯一性结果。一个应用是W1,n函数的指数在L2意义上的有限阶消失性质。我们进一步讨论了Cauchy-Riemann算子∂¯的相关结果,并描述了全纯函数在边界上平滑扩展的消失阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信