{"title":"Global solvability and unboundedness in a fully parabolic quasilinear chemotaxis model with indirect signal production","authors":"Xuan Mao , Yuxiang Li","doi":"10.1016/j.jmaa.2025.129857","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with a quasilinear chemotaxis model with indirect signal production, given by <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>D</mi><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>u</mi><mo>−</mo><mi>S</mi><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>w</mi></math></span> and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>u</mi></math></span>, posed in a bounded smooth domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, subjected to homogeneous Neumann boundary conditions. Here, the nonlinear diffusion <em>D</em> and sensitivity <em>S</em> generalize the prototypes <span><math><mi>D</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup></math></span> and <span><math><mi>S</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>β</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>s</mi></math></span>. Ding and Wang (2019) <span><span>[8]</span></span> showed that the system possesses a globally bounded classical solution if <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo><</mo><mi>min</mi><mo></mo><mo>{</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>/</mo><mi>n</mi><mo>,</mo><mn>4</mn><mo>/</mo><mi>n</mi><mo>}</mo></math></span>. In contrast, for the Jäger-Luckhaus variant of this model, in which the second equation is replaced by <span><math><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>w</mi><mo>/</mo><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>+</mo><mi>w</mi></math></span>, Tao and Winkler (2025) <span><span>[36]</span></span> established that if <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>></mo><mn>4</mn><mo>/</mo><mi>n</mi></math></span> and <span><math><mi>β</mi><mo>></mo><mn>2</mn><mo>/</mo><mi>n</mi></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, with radial assumptions, the variant admits finite-time blow-up solutions. We focus on the case <span><math><mi>β</mi><mo><</mo><mn>2</mn><mo>/</mo><mi>n</mi></math></span> and prove that the assumption <span><math><mi>β</mi><mo><</mo><mn>2</mn><mo>/</mo><mi>n</mi></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> is sufficient for global solvability of classical solutions. Furthermore, if <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>></mo><mn>4</mn><mo>/</mo><mi>n</mi></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, then radially symmetric initial data with large negative energy lead to blow-up happening in finite or infinite time. Both of these results imply that the system allows infinite-time blow-up if <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>></mo><mn>4</mn><mo>/</mo><mi>n</mi></math></span> and <span><math><mi>β</mi><mo><</mo><mn>2</mn><mo>/</mo><mi>n</mi></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 1","pages":"Article 129857"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006389","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with a quasilinear chemotaxis model with indirect signal production, given by , and , posed in a bounded smooth domain , subjected to homogeneous Neumann boundary conditions. Here, the nonlinear diffusion D and sensitivity S generalize the prototypes and . Ding and Wang (2019) [8] showed that the system possesses a globally bounded classical solution if . In contrast, for the Jäger-Luckhaus variant of this model, in which the second equation is replaced by , Tao and Winkler (2025) [36] established that if and for , with radial assumptions, the variant admits finite-time blow-up solutions. We focus on the case and prove that the assumption for is sufficient for global solvability of classical solutions. Furthermore, if for , then radially symmetric initial data with large negative energy lead to blow-up happening in finite or infinite time. Both of these results imply that the system allows infinite-time blow-up if and for .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.