Multi-task learning for joint classification and segmentation of metallographic microstructures

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhihao Gao , Yintao Zhou
{"title":"Multi-task learning for joint classification and segmentation of metallographic microstructures","authors":"Zhihao Gao ,&nbsp;Yintao Zhou","doi":"10.1016/j.matlet.2025.138987","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate analysis of metallographic microstructures is crucial for evaluating material properties. We propose a multi-task learning framework based on a modified U-Net that jointly performs semantic segmentation and image-level classification. The model features a shared encoder and task-specific decoders, with an adaptive loss weighting mechanism for balanced optimization. Experiments on a manually annotated dataset of 200<span><math><mo>×</mo></math></span> and 500<span><math><mo>×</mo></math></span> optical images of pure iron and hypereutectoid steel show that our approach outperforms traditional and single-task baselines in terms of accuracy, boundary precision, and convergence efficiency in joint-task training scenarios. All code and data used in this study are publicly available at <span><span>https://doi.org/10.5281/zenodo.15702261</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"399 ","pages":"Article 138987"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X2501016X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate analysis of metallographic microstructures is crucial for evaluating material properties. We propose a multi-task learning framework based on a modified U-Net that jointly performs semantic segmentation and image-level classification. The model features a shared encoder and task-specific decoders, with an adaptive loss weighting mechanism for balanced optimization. Experiments on a manually annotated dataset of 200× and 500× optical images of pure iron and hypereutectoid steel show that our approach outperforms traditional and single-task baselines in terms of accuracy, boundary precision, and convergence efficiency in joint-task training scenarios. All code and data used in this study are publicly available at https://doi.org/10.5281/zenodo.15702261.
金相组织联合分类与分割的多任务学习
准确分析金相组织是评价材料性能的关键。我们提出了一个基于改进U-Net的多任务学习框架,该框架联合执行语义分割和图像级分类。该模型具有共享编码器和特定任务解码器的特点,并具有自适应损失加权机制,用于平衡优化。在纯铁和过共析钢的200倍和500倍光学图像的人工标注数据集上进行的实验表明,在联合任务训练场景中,我们的方法在准确率、边界精度和收敛效率方面都优于传统和单任务基线。本研究中使用的所有代码和数据均可在https://doi.org/10.5281/zenodo.15702261上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信