{"title":"Party politics in transport policy with a large language model","authors":"Hyunsoo Yun , Eun Hak Lee","doi":"10.1016/j.tranpol.2025.06.021","DOIUrl":null,"url":null,"abstract":"<div><div>Given the significant influence of lawmakers' political ideologies on legislative decision-making, analyzing their impact on transportation-related policymaking is of critical importance. This study introduces a novel framework that integrates a large language model (LLM) with explainable artificial intelligence (XAI) to analyze transportation-related legislative proposals. Legislative bill data from South Korea's 21st National Assembly were used to identify key factors shaping transportation policymaking. These include political affiliations and sponsor characteristics. The LLM was employed to classify transportation-related bill proposals through a stepwise filtering process based on keywords, sentences, and contextual relevance. XAI techniques were then applied to examine the relationships between political party affiliation and associated attributes. The results revealed that the number and proportion of conservative and progressive sponsors, along with district size and electoral population, were critical determinants shaping legislative outcomes. These findings suggest that both parties contributed to bipartisan legislation through different forms of engagement, such as initiating or supporting proposals. This integrated approach offers a valuable tool for understanding legislative dynamics and guiding future policy development, with broader implications for infrastructure planning and governance.</div></div>","PeriodicalId":48378,"journal":{"name":"Transport Policy","volume":"171 ","pages":"Pages 487-496"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Policy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967070X2500246X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given the significant influence of lawmakers' political ideologies on legislative decision-making, analyzing their impact on transportation-related policymaking is of critical importance. This study introduces a novel framework that integrates a large language model (LLM) with explainable artificial intelligence (XAI) to analyze transportation-related legislative proposals. Legislative bill data from South Korea's 21st National Assembly were used to identify key factors shaping transportation policymaking. These include political affiliations and sponsor characteristics. The LLM was employed to classify transportation-related bill proposals through a stepwise filtering process based on keywords, sentences, and contextual relevance. XAI techniques were then applied to examine the relationships between political party affiliation and associated attributes. The results revealed that the number and proportion of conservative and progressive sponsors, along with district size and electoral population, were critical determinants shaping legislative outcomes. These findings suggest that both parties contributed to bipartisan legislation through different forms of engagement, such as initiating or supporting proposals. This integrated approach offers a valuable tool for understanding legislative dynamics and guiding future policy development, with broader implications for infrastructure planning and governance.
期刊介绍:
Transport Policy is an international journal aimed at bridging the gap between theory and practice in transport. Its subject areas reflect the concerns of policymakers in government, industry, voluntary organisations and the public at large, providing independent, original and rigorous analysis to understand how policy decisions have been taken, monitor their effects, and suggest how they may be improved. The journal treats the transport sector comprehensively, and in the context of other sectors including energy, housing, industry and planning. All modes are covered: land, sea and air; road and rail; public and private; motorised and non-motorised; passenger and freight.